Advances in Gerontology

, Volume 2, Issue 1, pp 19–26 | Cite as

The effects of the relict microorganism B. sp. on development, gas exchange, spontaneous motor activity, stress resistance, and survival of Drosophila melanogaster

  • A. V. Brushkov
  • V. V. Bezrukov
  • G. I. Griva
  • Kh. K. Muradyan
Article

Abstract

Relict microorganisms preserved in the permafrost of geological periods possess a unique resistance to unfavorable factors of the internal and external environment. Their metabolic, DNA repair, and growth capacities are still under discussion, but the very fact of their existence in permafrost during many thousands of years is evidence of their phenomenal viability. One of these bacteria (B. sp.) that was found in Yakutia and that proved to be capable of enhancing longevity and immunity in drosophila and mice (A.V. Brushkov et al., 2009) was tested in developing drosophila fruit flies as follows: a culture of B. sp. (1 to 500 million/ml) was added to the nutrient medium of Drosophila melanogaster and a set of indices characterizing growth rate and mortality at the larval and pupal stages was investigated. The level of gas exchange (\(V_{O_2 }\) and \(V_{CO_2 }\)), body weight, and stress resistance were investigated in imagoes hatched under these conditions. B. sp. induces dose-dependent growth acceleration and decrease in larval mortality. The increase in spontaneous motor activity, \(V_{O_2 }\) and \(V_{CO_2 }\), and body weight, as well as resistance to heat shock and UV irradiation, were demonstrated for imagoes.

Keywords

relict microorganisms drosophila development survival stress resistance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brushkov, A.V., Mel’nikov, V.P., Sukhovei, Yu.G., et al., Relict Microorganisms of Cryolite Zone as Possible Objects of Gerontology, Uspekhi Gerontol., 2009, vol. 22, pp. 253–258.Google Scholar
  2. 2.
    Kalenova, L.F., Sukhovei, Yu.G., Brushkov, A.V., et al., Influence of Permafrost Microorganisms on Quality and Duration of Life of Laboratory Animals, Ros. Fziol. Zhurn., 2010, vol. 96, pp. 89–97.Google Scholar
  3. 3.
    Assefa, Z., Van Laethem, A., Garmyn, M., and Agostinis, P., Ultraviolet Radiation-Induced Apoptosis in Keratinocytes: On the Role of Cytosolic Factors, Biochim. Biophys. Acta, 2005, vol. 1755, pp. 90–106.PubMedGoogle Scholar
  4. 4.
    Ayala-Del-Río, H.L., Chain, P.S., Grzymski, J.J., et al., The Genome Sequence of Psychrobacter arcticus 273–4, a Psychroactive Siberian Permafrost Bacterium, Reveals Mechanisms for Adaptation to Low-Temperature Growth, Appl. Environm. Microbiol., 2010, vol. 76, pp. 2304–2312.CrossRefGoogle Scholar
  5. 5.
    Bakermans, C., Tsapin, A. I., Souza-Egipsy, V., et al., Reproduction and Metabolism at -10 Degrees C of Acteria Solated from Siberian Permafrost, Environm. Microbiol., 2003, vol. 5, pp. 321–326.CrossRefGoogle Scholar
  6. 6.
    Cano, R.J. and Borucki, M.K., Revival and Identification of Bacterial Spores in 25- to 40-Million-Year-Old Dominican Amber, Science, 1995, vol. 268(5213), pp. 1060–1064.PubMedCrossRefGoogle Scholar
  7. 7.
    Cano, R.J., Poinar, H.N., Pieniazek, N.J., et al., Amplification and Sequencing of DNA from a 120–135-Million-Year-Old Weevil, Nature, 1993, vol. 363(6429), pp. 536–538.PubMedCrossRefGoogle Scholar
  8. 8.
    Costa, R.M.A., Chiganças, V., Galhardo, R., et al., The Eukaryotic Nucleotide Excision Repair Pathway, Biochimie, 2003, vol. 85, pp. 1083–1099.PubMedCrossRefGoogle Scholar
  9. 9.
    Fish, S.A., Shepherd, T.J., McGenity, T.J., and Grant, W.D., Recovery of 16S Ribosomal RNA Gene Fragments from Ancient Halite, Nature, 2002, vol. 417, pp. 432–436.PubMedCrossRefGoogle Scholar
  10. 10.
    Johnson, S.S., Hebsgaard, M.B., Christensen, T.R., et al., Ancient Bacteria Show Evidence of DNA Repair, Proc. Natl. Acad. Sci. USA, 2007, vol. 104, pp. 14401–14405.PubMedCrossRefGoogle Scholar
  11. 11.
    Katayama, T., Kato, T., Tanaka, M., et al., Tomitella biformata gen. nov., sp. nov., a Novel Member of the Suborder Corynebacterineae Isolated from a Permafrost Ice Wedge, Int. J. System. Evol. Microbiol., 2010, vol. 60, pp. 2803–2807.CrossRefGoogle Scholar
  12. 12.
    Katayama, T., Tanaka, M., Moriizumi, J., et al., Phylogenic Analysis of Bacteria Preserved in a Permafrost Ice Wage for 25000 Years, Appl. Environm. Micriobiol., 2007, vol. 73, no. 7, pp. 2360–2363.CrossRefGoogle Scholar
  13. 13.
    Krivushin, K.V., Shcherbakova, V.A., Petrovskaya, L.E., and Rivkina, E.M., Methanobacterium veterum sp. nov., from Ancient Siberian Permafrost, Int. J. System. Evol. Microbiol., 2010, vol. 60, pp. 455–459.CrossRefGoogle Scholar
  14. 14.
    Lans, H., Marteijn, J. A., Schumacher, B., et al., Involvement of Global Genome Repair, Transcription Coupled Repair, and Chromatin Remodeling in UV DNA Damage Response Changes during Development, PLoS Genet., 2010, vol. 6(5).Google Scholar
  15. 15.
    Lewis, K., Epstein, S., Godoy, V.G., and Hong, S.H., Intact DNA in Ancient Rermafrost, Trends Microbiol., 2008, vol. 16(3), pp. 92–94.PubMedCrossRefGoogle Scholar
  16. 16.
    Lindahl, T., Instability and Decay of the Primary Structure of DNA, Nature, 1993, vol. 362(6422), pp. 709–715.PubMedCrossRefGoogle Scholar
  17. 17.
    McKay, C.P., An Origin of Life on Mars, Cold Spr. Harb. Perspect. Biol., 2010, vol. 2(4).Google Scholar
  18. 18.
    Muñoz, M.J., Longevity and Heat Stress Regulation in Caenorhabditis elegans, Mech. Aging Dev., 2003, vol. 124(1), pp. 43–48.PubMedCrossRefGoogle Scholar
  19. 19.
    Osborne, M.R. and Phillips, D.H., Preparation of a Methylated DNA Standard, and Its Stability on Storage, Chem. Res. Toxicol., 2000, vol. 13(4), pp. 257–261.PubMedCrossRefGoogle Scholar
  20. 20.
    Panieri, G., Lugli, S., Manzi, V., et al., Ribosomal RNA Gene Fragments from Fossilized Cyanobacteria Identified in Primary Gypsum from the Late Miocene, Italy, Geobiology, 2010, vol. 8(2), pp. 101–111.PubMedCrossRefGoogle Scholar
  21. 21.
    Poinar, H.N., Höss, M., Bada, J.L., and Pääbo S., Amino Acid Racemization and the Preservation of Ancient DNA, Science, 1996, vol. 272(5263), pp. 864–866.PubMedCrossRefGoogle Scholar
  22. 22.
    Price, P.B., Microbial Genesis, Life and Death in Glacial Ice, Canad. J. Microbiol., 2009, vol. 55(1), pp. 1–11.CrossRefGoogle Scholar
  23. 23.
    Rasmussen, M., Li, Y., Lindgreen, S., et al., Ancient Human Genome Sequence of an Extinct Palaeo-Eskimo, Nature, 2010, vol. 463(7282), pp. 757–762.PubMedCrossRefGoogle Scholar
  24. 24.
    Smith, D.J., Schuerger, A.C., Davidson, M.M., et al., Survivability of Psychrobacter cryohalolentis K5 under Simulated Martian Surface Conditions, Astrobiology, 2009, vol. 9(2), pp. 221–228.PubMedCrossRefGoogle Scholar
  25. 25.
    Stergiou, L., Doukoumetzidis, K., Sendoel, A., and Hengartner, M.O., The Nucleotide Excision Repair Pathway is Required for UV-C-Induced Apoptosis in Caenorhabditis elegans, Cell Death Differ., 2007, vol. 14(6), pp. 1129–1138.PubMedCrossRefGoogle Scholar
  26. 26.
    Steven, B., Pollard, W.H., Greer, C.W., and Whyte, L.G., Microbial Diversity and Activity Through a Permafrost/Ground Ice Core Profile from the Canadian High Arctic, Environm. Microbiol., 2008, vol. 10(12), pp. 3388–3403.CrossRefGoogle Scholar
  27. 27.
    Vishnivetskaya, T.A. and Kathariou, S., Putative Transposases Conserved in Exiguobacterium Isolates from Ancient Siberian Permafrost and from Contemporary Surface Habitats, Appl. Environm. Microbiol., 2005, vol. 71(11), pp. 6954–6962.CrossRefGoogle Scholar
  28. 28.
    Vishnivetskaya, T., Kathariou, S., McGrath, J., et al., Low Temperature Recovery Strategies for the Isolation of Bacteria from Ancient Permafrost Sediments, Extremophiles, 2000, vol. 4(3), pp. 165–173.PubMedCrossRefGoogle Scholar
  29. 29.
    Vreeland, R.H., Rosenzweig, W.D., and Powers, D.W., Isolation of a 250 Million-Year-Old Halotolerant Bacterium from a Primary Salt Crystal, Nature, 2000, vol. 407(6806), pp. 897–900.PubMedCrossRefGoogle Scholar
  30. 30.
    Wang, G.X., Liu, Y.T., Li, F.Y., et al., Immunostimulatory Activities of Bacillus Simplex DR-834 to Carp (Cyprinus carpio), Fish Shellfish Immunol., 2010, vol. 29(3), pp. 378–387.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. V. Brushkov
    • 1
  • V. V. Bezrukov
    • 2
  • G. I. Griva
    • 3
  • Kh. K. Muradyan
    • 2
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.State Institute of GerontologyNational Academy of Medical Sciences of UkraineKievUkraine
  3. 3.Tyumen Scientific Center, Siberian BranchRussian Academy of SciencesTyumenRussia

Personalised recommendations