Advances in Gerontology

, Volume 1, Issue 4, pp 299–303 | Cite as

Age changes in the number and proliferation of fibroblasts in the human skin

  • G. Gunin
  • N. K. Kornilova
  • V. V. Petrov
  • O. V. Vasilyeva
Article

Abstract

Fibroblasts synthesize all components of the extracellular matrix of the dermis, including collagen, elastin, proteoglycans, and minor proteins. Consequently, the changes in the size and functional status of these cells may disrupt the formation of intercellular substance, which will contribute to the appearance of outward signs of aging. Therefore, the aim of this study was to investigate age-related changes in the size and proliferation of fibroblasts in the dermis of a human. The work showed that the total number of fibroblasts in the dermis of a human decreases progressively with age. The number of PCNA-positive fibroblasts, which reflects the proliferative activity, also significantly decreased with age. Thus, the reduction in the number of fibroblasts in the dermis with age is partly due to the reduced activity of proliferation.

Keywords

skin aging fibroblasts proliferation PCNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fathke, C., Wilson, L., Hutter, J., et al., Contribution of Bone Marrow-Derived Cells to Skin: Collagen Deposition and Wound Repair, Stem Cells, 2004, vol. 22, pp. 812–822.PubMedCrossRefGoogle Scholar
  2. 2.
    Fisher, G.J., Varani, J., and Voorhees, J.J., Looking Older: Fibroblast Collapse and Therapeutic Implications, Arch. Derm., 2008, vol. 144, pp. 666–672.PubMedCrossRefGoogle Scholar
  3. 3.
    Gago, N., Perez-Lopez, V., Sanz-Jaka, J.P., et al., Age-Dependent Depletion of Human Skin-Derived Progenitor Cells, Stem Cells, 2009, vol. 27, pp. 1164–1172.PubMedCrossRefGoogle Scholar
  4. 4.
    Giacomoni, P.U. and Rein, G., Factors of Skin Aging Share Common Mechanisms, Biogerontology, 2001, vol. 2, pp. 219–229.PubMedCrossRefGoogle Scholar
  5. 5.
    Gilchrest, B.A., Stoff, J.S., and Soter, N.A., Chronologic Aging Alters the Response to Ultraviolet-Induced Inflammation in Human Skin, J. Invest. Derm., 1982, vol. 79, pp. 11–15.PubMedCrossRefGoogle Scholar
  6. 6.
    Goukassian, D., Gad, F., Yaar, M., et al., Mechanisms and Implications of the Age-Associated Decrease in DNA Repair Capacity, FASEB J., 2000, vol. 14, pp. 1325–1334.PubMedCrossRefGoogle Scholar
  7. 7.
    Gunin, A.G., Bitter, A.D., Demakov, A.B., et al., Effects of Peroxisome Proliferator Activated Receptors α and γ Agonists on Estradiol-Induced Proliferation and Hyperplasia Formation in the Mouse Uterus, J. Endocr., 2004, vol. 182, pp. 229–239.PubMedCrossRefGoogle Scholar
  8. 8.
    Gunin, A.G., Kapitova, I.N., and Suslonova, N.V., Effects of Histone Deacetylase Inhibitors on Estradiol Induced Proliferation and Hyperplasia Formation in the Mouse Uterus, J. Endocr., 2005, vol. 185, pp. 539–549.PubMedCrossRefGoogle Scholar
  9. 9.
    Ishida, Y., Kimura, A., Takayasu, T., et al., Detection of Fibrocytes in Human Skin Wounds and Its Application for Wound Age Determination, Int. J. Legal. Med., 2009, vol. 123, pp. 299–304.PubMedCrossRefGoogle Scholar
  10. 10.
    Kim, W.S., Park, B.S., Park, S.H., et al., Antiwrinkle Effect of Adipose-Derived Stem Cell: Activation of Dermal Fibroblast by Secretory Factors, J. Derm. Sci., 2009, vol. 53, pp. 96–102.CrossRefGoogle Scholar
  11. 11.
    Lorenz, K., Sicker, M., Schmelzer, E., et al., Multilineage Differentiation Potential of Human Dermal Skin-Derived Fibroblasts, Exp. Derm., 2008, vol. 17, pp. 925–932.PubMedCrossRefGoogle Scholar
  12. 12.
    Ma, W., Hommel, C., Brenneisen, P., et al., Long-Term Growth Arrest of PUVA-Treated Fibroblasts in G2/M in the Absence of P16(INK4a) p21(CIP1) or P53, Exp. Derm., 2003, vol. 12, pp. 629–637.PubMedCrossRefGoogle Scholar
  13. 13.
    Makrantonaki, E. and Zouboulis, C.C., Molecular Mechanisms of Skin Aging: State of the Art, Ann. N. Y. Acad. Sci., 2007, vol. 1119, pp. 40–50.PubMedCrossRefGoogle Scholar
  14. 14.
    Mammone, T., Gan, D., and Foyouzi-Youssefi, R., Apoptotic Cell Death Increases with Senescence in Normal Human Dermal Fibroblast Cultures, Cell. Biol. Int., 2006, vol. 30, pp. 903–909.PubMedCrossRefGoogle Scholar
  15. 15.
    Montagna, W. and Carlisle, K., Structural Changes in Aging Skin, Brit. J. Derm., 1990, vol. 122, Suppl. 35, pp. 61–70.PubMedCrossRefGoogle Scholar
  16. 16.
    Mori, L., Bellini, A., Stacey, M.A., et al., Fibrocytes Contribute to the Myofibroblast Population in Wounded Skin and Originate from the Bone Marrow, Exp. Cell Res., 2005, vol. 304, pp. 81–90.PubMedCrossRefGoogle Scholar
  17. 17.
    Naru, E., Ohta, T., Inomata, K., et al., Donor Age-Dependent Acceleration of Cellular Aging by Repeated Ultraviolet A Irradiation of Human Dermal Fibroblasts Derived from a Single Donor, Hum. Cell, 2009, vol. 22, pp. 31–37.PubMedCrossRefGoogle Scholar
  18. 18.
    Prives, C. and Gottifredi, V., The p21 and PCNA Partnership: A New Twist for an Old Plot, Cell Cycle, 2008, vol. 7, pp. 3840–3846.PubMedCrossRefGoogle Scholar
  19. 19.
    Simpson, R.M., Wells, A., Thomas, D., et al., Aging Fibroblasts Resist Phenotypic Maturation Because of Impaired Hyaluronan-Dependent CD44/Epidermal Growth Factor Receptor Signaling, Amer. J. Path., 2010, vol. 176, pp. 1215–1228.PubMedCrossRefGoogle Scholar
  20. 20.
    Varani, J., Dame, M.K., Rittie, L., et al., Decreased Collagen Production in Chronologically Aged Skin: Roles of Age-Dependent Alteration in Fibroblast Function and Defective Mechanical Stimulation, Amer. J. Path., 2006, vol. 168, pp. 1861–1868.PubMedCrossRefGoogle Scholar
  21. 21.
    Zouboulis, C.C., Adjaye, J., Akamatsu, H., et al., Human Skin Stem Cells and the Aging Process, Exp. Geront., 2008, vol. 43, pp. 986–997.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • G. Gunin
    • 1
  • N. K. Kornilova
    • 1
  • V. V. Petrov
    • 1
  • O. V. Vasilyeva
    • 1
  1. 1.Chuvash State UniversityCheboksaryRussia

Personalised recommendations