Advertisement

Advances in Gerontology

, Volume 1, Issue 1, pp 16–27 | Cite as

Programmed cell death as a target to interrupt the aging program

  • F. F. Severin
  • V. P. SkulachevEmail author
Article

Abstract

There are two opposite points of view on aging of organisms. The traditional concept assumes that aging is a stochastic process consisting in age-dependent accumulation of random injuries in living systems. However, many pieces of evidence are recently obtained in favor of an alternative scheme suggesting that aging is genetically programmed being the final step of ontogenesis. The latter concept predicts (i) the existence of non-aging species which have lost the aging program and (ii) that the program in question can be experimentally interrupted by manipulations with corresponding genes or by small molecules operating as inhibitors of the execution of aging program. In this paper we summarize observations which are consistent with these two predictions. In both cases, interruption of the aging program is based upon inhibition of programmed cell death (apoptosis) mediated by mitochondrial reactive oxygen species (ROS). We argue that the main difference between young and old multicellular organisms consists in the cellularity, i.e. in number of functional cells in organs or tissues rather than in quality of these cells. The cellularity decreases due to domination of apoptosis over proliferation in aging organisms. This means that apoptosis appears to be the basis of aging program. A pharmacological approach to switch off the aging program is considered, and this approach involves mitochondria-targeted antioxidants and uncouplers. Such compounds prevent mitochondrial oxidative stress which increases with age and stimulates the age-dependent apoptosis.

Keywords

apoptosis aging mitochondria-targeted antioxidants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agapova, L.G., Chernyak, B.V., Domnina, L.V., et al. Mitochondria-Targeted Plastoquinone Derivative as a Tool to Interrupt the Aging Program. 3. SkQ1 Inhibits the Tumor Development from p53-Deficient Cells, Biokhimiya, 2008, vol. 73, no. 12, pp. 1622–1640.Google Scholar
  2. 2.
    Anisimov, V.N. Molekulyarnye i fiziologicheskie mekhanizmy stareniya (The Molecular and Physiological Mechanisms of Aging), St. Petersburg: Nauka, 2003.Google Scholar
  3. 3.
    Anisimov, V.N., Epiphysis, Biorhythms, and Organism’s Aging, Usp. Fiziol. Nauk, 2008, vol. 39, no. 4, pp. 52–76.Google Scholar
  4. 4.
    Anisimov, V.N., Bakeeva, L.E., Egormin, P.A., et al., Mitochondria-Targeted Plastoquinone Derivative as a Tool to Interrupt the Aging Program 5. SkQ1 Increases the Lifespan and Prevents the Development of Aging Manifestations, Biokhimiya, 2008, vol. 73, no. 12, pp. 1655–1670.Google Scholar
  5. 5.
    Antonenko, Yu.N., Avetisyan, A.V., Bakeeva, L.E., et al., Mitochondria-Targeted Plastoquinone Derivative as a Tool to Interrupt the Aging Program. 1. Plastoquinone Cation Derivatives: Synthesis and in vitro Study, Biokhimiya, 2008, vol. 73, no. 12, pp. 1589–1606.Google Scholar
  6. 6.
    Bakeeva, L.E., Barskov, I.V., Egorov, M.V., et al., Mitochondria-Targeted Plastoquinone Derivative as a Tool to Interrupt the Aging Program. 2. Therapy of Some Age-Related Pathologies Mediated by Reactive Oxygen Species (Heart Arrhythmia, Myocardial Infarction, Renal Ischemia, and Brain Stroke), Biokhimiya, 2008, vol. 73, no. 12, pp. 1607–1621.Google Scholar
  7. 7.
    Levitsky, D.O. and Skulachev, V.P., The Action of Penetrating Synthetic Ions on the Respiration of Mitochondria and Submitochondrial Particles, Mol. Biol. (Moscow), 1972, vol. 6, pp. 33–343.Google Scholar
  8. 8.
    Knorre, D.A., Smirnova, E.K., and Severin, F.F., The Natural Conditions for Programmed Death of the Yeast Saccharomyces cerevisiae, Biokhimiya, 2005, vol. 30, pp. 323–326.Google Scholar
  9. 9.
    Neroev, V.V., Arkhipova, M.M., Bakeeva, L.E., et al., Mitochondria-Targeted Plastoquinone Derivative as a Tool to Interrupt the Aging Program. 4. The Age-Related Eye Diseases. SkQ Restores Vision to Blind Animals, Biokhimiya, 2008, vol. 73, no. 12, pp. 1641–1654.Google Scholar
  10. 10.
    Nesis, K.N., A Cruel Love of Squids, in Russkaya Nauka: vystoyat’ i vozordit’sya (The Russian Science: To Withstand and Resurrect), Moscow: Nauka-fizmatlit, 1997, pp. 358–365.Google Scholar
  11. 11.
    Padalko, V.I., An Uncoupler of Oxidative Phosphorylation Extends the Life of Drosophila, Biokhimiya, 2005, vol. 70, no. 9, pp. 1193–1197.Google Scholar
  12. 12.
    Severin, S.E., Skulachev, V.P., and Yaguzhinsky, L.S., A Possible Role of Carnitine in the Fatty Acid Transport across the Mitochondrial Membrane, Biokhimiya, 1970, vol. 35, pp. 1250–1252.Google Scholar
  13. 13.
    Skulachev, V.P., Energetika biologicheskikh membran (The Energetics of Biological Membranes), Moscow: Nauka, 1989.Google Scholar
  14. 14.
    Skulachev, V.P., Organism’s Aging is a Special Biological Function Rather than a Result of Breakdown of a Complex Biological System: Biochemical Support of Weismann’s Hypothesis, Biokhimiya, 1997, vol. 62, no. 12, pp. 1394–1399.Google Scholar
  15. 15.
    Skulachev, V.P., Aging as an Atavistic Program, Which Can Be Possibly Canceled, Vestn. Ross. Akad. Nauk, 2005, vol. 75, no. 9, pp. 831–843.Google Scholar
  16. 16.
    Skulachev, V.P., At Attempt of Biochemists to Tackle the Problem of Aging: A “Mega Project” on Penetrating Ions. First Results and Prospects, Biokhimiya, 2007, vol. 72, no. 12, pp. 1700–1714.Google Scholar
  17. 17.
    Umansky, S.R., The Genetic Program of Cell Death: Hypothesis and Some Applications (Transcription, Carcinogenesis, and Aging), Usp. Sovrem. Biol., 1982, vol. 93, no. 1, pp. 139–148.Google Scholar
  18. 18.
    Al-Abdulwahab, S.S., Effects of Aging on Muscle Strength and Functional Ability of Healthy Saudi Arabian Males, Ann. Saudi Med., 1999, vol. 19, pp. 211–215.PubMedGoogle Scholar
  19. 19.
    Andziak, B., O’Connor, T.P., and Buffenstein, R., Antioxidants Do Not Explain the Disparate Longevity between Mice and the Longest-Living Rodent, the Naked Mole-Rat, Mech. Aging Dev., 2005, vol. 126, pp. 1206–1212.PubMedCrossRefGoogle Scholar
  20. 20.
    Anisimov, V.N., Popovich, I.G., Zabezhinski, M.A., et al., Melatonin as Antioxidant, Geroprotector, and Anticarcinogen, Biochim. Biophys. Acta, 2006, vol. 1757, pp. 573–589.PubMedCrossRefGoogle Scholar
  21. 21.
    Antonenko, Yu.N., Roginsky, V.A., Pashkovskaya, A.A., et al., Protective Effects of Mitochondria-Targeted Antioxidant SkQ in Aqueous and Lipid Membrane Environments, J. Membr. Biol., 2008, vol. 222, pp. 141–149.PubMedCrossRefGoogle Scholar
  22. 22.
    Barja, G., Mitochondrial Free Radical Production and Aging in Mammals and Birds, Ann. N.Y. Acad. Sci., 1998, vol. 854, pp. 224–238.PubMedCrossRefGoogle Scholar
  23. 23.
    Barja, G. and Herrero, A., Oxidative Damage to Mitochondrial DNA Is Inversely Related to Maximum Life Span in the Heart and Brain of Mammals, FASEB J., 2001, vol. 15, pp. 1589–1591.PubMedGoogle Scholar
  24. 24.
    Berry, A., Greco, A., Giorgio, M., et al., Deletion of the Lifespan Determinant p66(Shc) Improves Performance in a Spatial Memory Task, Decreases Levels of Oxidative Stress Markers in the Hippocampus and Increases Levels of the Neurotrophin BDNF in Adult Mice, Exp. Gerontol. 2008, vol. 43. pp. 200–208.PubMedCrossRefGoogle Scholar
  25. 25.
    Bitterman, K.J., Medvedik, O., and Sinclair D.A., Longevity Regulation in Saccharomyces cerevisiae: Linking Metabolism, Genome Stability, and Heterochromatin, Microbiol. Mol. Biol. Rev., 2003, vol. 67, pp. 376–399.PubMedCrossRefGoogle Scholar
  26. 26.
    Brookes, P.S., Mitochondrial Production of Oxidants and Their Role in the Regulation of Cellular Processes, in Handbook of Neurochemistry and Molecular Neurobiology, Berlin-Heidelberg: Springer-Verlag, 2006, pp. 3–21.Google Scholar
  27. 27.
    Brunet-Rossinni, A.K. and Austad, S.N., Aging Studies on Bats: A Review, Biogerontology, 2005, vol. 5, pp. 211–222.CrossRefGoogle Scholar
  28. 28.
    Buffenstein, R. The Naked Mole-Rat: A New Long-Living Model for Human Aging Research, J. Gerontol. A Biol. Sci. Med. Sci., 2005, vol. 60, pp. 1369–1377.PubMedGoogle Scholar
  29. 29.
    Bulteau, A.L., Szweda, L.I., and Friguet, B., Mitochondrial Protein Oxidation and Degradation in Response to Oxidative Stress and Aging, Exp. Gerontol., 2006, vol. 41, pp. 653–657.PubMedCrossRefGoogle Scholar
  30. 30.
    Burns, R.J., Smith, R.A., and Murphy, M.P., Synthesis and Characterization of Thiobutyltriphenylphosphonium Bromide, a Novel Thiol Reagent Targeted to the Mitochondrial Matrix, Arch. Biochem. Biophys., 1995, vol. 322, pp. 60–68.PubMedCrossRefGoogle Scholar
  31. 31.
    Caldeira da Silva, C.C., Cerqueira, F.M., Barbosa, L.F., et al., Mild Mitochondrial Uncoupling in Mice Affects Energy Metabolism, Redox Balance and Longevity, Aging Cell, 2008, vol. 7, pp. 552–560.PubMedCrossRefGoogle Scholar
  32. 32.
    Corbucci, G.G. and Marchi, A., Melatonin in Cardiac Ischemia/Reperfusion-Induced Mitochondrial Adaptive Changes, Cardiovasc. Hematol. Disord. Drug Targets, 2007, vol. 7, pp. 163–169.CrossRefGoogle Scholar
  33. 33.
    Darwin, C., The Descent of Man, London: John Murray, 1871.Google Scholar
  34. 34.
    Decker, T., Oelsner, M., Kreitman R.J., et al., Induction of Caspase-Dependent Programmed Cell Death in B-Cell Chronic Lymphocytic Leukemia by Anti-CD22 Immunotoxins, Blood, 2004, vol. 103, pp. 2718–2726.PubMedCrossRefGoogle Scholar
  35. 35.
    Doughan, A.K. and Dikalov, S.I., Mitochondrial Redox Cycling of Mitoquinone Leads to Superoxide Production and Cellular Apoptosis, Antioxid. Redox Signal., 2007, vol. 9, pp. 1825–1836.PubMedCrossRefGoogle Scholar
  36. 36.
    Dowkins, R., The Selfish Gene, Oxford: Oxford Univ. Publ., 1976.Google Scholar
  37. 37.
    Droge, W. and Schipper, H.M., Oxidative Stress and Aberrant Signaling in Aging and Cognitive Decline, Aging Cell, 2007, vol. 6, pp. 361–370.PubMedCrossRefGoogle Scholar
  38. 38.
    Dufour, E., Boulay, J., Rincheval, V., and Sainsard-Chanet, A., A Causal Link between Respiration and Senescence in Podospora anserina, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 4138–4143.PubMedCrossRefGoogle Scholar
  39. 39.
    Eisenberg, T., Buttner, S., Kroemer, G., and Madeo, F., The Mitochondrial Pathway in Yeast Apoptosis, Apoptosis, 2007, vol. 12, pp. 1011–1023.PubMedCrossRefGoogle Scholar
  40. 40.
    Fahrenkrog, B., Sauder, U., and Aebi, U., The S. cerevisiae HtrA-like Protein Nma111p Is a Nuclear Serine Protease that Mediates Yeast Apoptosis, J. Cell Sci., 2004, vol. 117, pp. 115–126.PubMedCrossRefGoogle Scholar
  41. 41.
    Fenton, M.J. and Golenbock, D.T., LPS-binding Proteins and Receptors, J. Leukocyte Biol., 1998, vol. 64, pp. 25–32.PubMedGoogle Scholar
  42. 42.
    Goglia, F. and Skulachev, V.P., A Function for Novel Uncoupling Proteins: Antioxidant Defense of Mitochondrial Matrix by Translocating Fatty Acid Peroxides from the Inner to the Outer Membrane Leaflet, FASEB J., 2003, vol. 17, pp. 1585–1591.PubMedCrossRefGoogle Scholar
  43. 43.
    Goldsmith, T.C., The Evolution of Aging, New York, Lincoln, Shanghai: iUniverse 2003.Google Scholar
  44. 44.
    Goldsmith, T.C., Aging, Evolvability, and the Individual Benefit Requirement; Medical Implications of Aging Theory Controversies, J. Theor. Biol., 2008, vol. 252, pp. 764–768.PubMedCrossRefGoogle Scholar
  45. 45.
    Green, D.E., The Electromechanochemical Model for Energy Coupling in Mitochondria, Biochim. Biophys. Acta, 1974, vol. 346, pp. 27–78.PubMedGoogle Scholar
  46. 46.
    Harper, J.M., Salmon, A.B., Leiser, S.F., et al., Skin-Derived Fibroblasts from Long-Lived Species are Resistant to Some, but Not All, Lethal Stresses and to the Mitochondrial Inhibitor Rotenone, Aging Cell, 2007, vol. 6, pp. 1–13.PubMedCrossRefGoogle Scholar
  47. 47.
    Holley, C.L., Olson, M.R., Colon-Ramos, D.A., and Kornbluth, S., Reaper Eliminates IAP Proteins through Stimulated IAP Degradation and Generalized Translational Inhibition, Nat. Cell Biol., 2002, vol. 4, pp. 439–444.PubMedCrossRefGoogle Scholar
  48. 48.
    Holmes, D.J., Fluckiger, R., and Austad, S.N., Comparative Biology of Aging in Birds: An Update, Exp. Gerontol., 2001, vol. 36, pp. 869–883.PubMedCrossRefGoogle Scholar
  49. 49.
    Humphries, K.M., Szweda, P.A., and Szweda, L.I., Aging: a Shift from Redox Regulation to Oxidative Damage, Free Radical Res., 2006, vol. 40, pp. 1239–1243.CrossRefGoogle Scholar
  50. 50.
    Iglesias-Serret, D., Pique, M., Gil, J., et al., Transcriptional and Translational Control of Mci-1 during Apoptosis, Arch. Biochem. Biophys., 2003, vol. 417, pp. 141–152.PubMedCrossRefGoogle Scholar
  51. 51.
    James, A.M., Cocheme, H.M., Smith, R.A., and Murphy, M.P., Interactions of Mitochondria-Targeted and Untargeted Ubiquinones with the Mitochondrial Respiratory Chain and Reactive Oxygen Species. Implications for the Use of Exogenous Ubiquinones as Therapies and Experimental Tools, J. Biol. Chem., 2005, vol. 280, pp. 21295–21312.PubMedCrossRefGoogle Scholar
  52. 52.
    Jauslin, M.L., Meier, T., Smith, R.A., and Murphy, M.P., Mitochondria-Targeted Antioxidants Protect Friedreich Ataxia Fibroblasts from Endogenous Oxidative Stress More Effectively than Untargeted Antioxidants, FASEB J., 2003, vol. 17, pp. 1972–1974.PubMedGoogle Scholar
  53. 53.
    Jenkins, C.E., Swiatoniowski, A., Issekutz, A.C., and Lin, T.J., Pseudomonas aeruginosa Exotoxin A Induces Human Mast Cell Apoptosis by a Caspase-8 and -3-Dependent Mechanism, J. Biol. Chem., 2004, vol. 279, pp. 37201–37207.PubMedCrossRefGoogle Scholar
  54. 54.
    Jezek, P. and Hlavata, L., Mitochondria in Homeostasis of Reactive Oxygen Species in Cell, Tissues, and Organism, Int. J. Biochem. Cell Biol., 2005, vol. 37, pp. 2478–2503.PubMedCrossRefGoogle Scholar
  55. 55.
    Karasek, M., Does Melatonin Play a Role in Aging Processes?, J. Physiol. Pharmacol., 2007, vol. 58,Suppl. 6, pp. 105–113.PubMedGoogle Scholar
  56. 56.
    Kelso, G.F., Porteous, C.M., Coulter, C.V., et al., Selective Targeting of a Redox-Active Ubiquinone to Mitochondria within Cells: Antioxidant and Antiapoptotic Properties, J. Biol. Chem., 2001, vol. 276, pp. 4588–4596.PubMedCrossRefGoogle Scholar
  57. 57.
    Kelso, G.F., Porteous, C.M., Hughes, G., et al., Prevention of Mitochondrial Oxidative Damage Using Targeted Antioxidants, Ann. N. Y Acad. Sci., 2002, vol. 959, pp. 263–274.PubMedCrossRefGoogle Scholar
  58. 58.
    Kerr, J.F., Wyllie, A.H., and Currie, A.R., Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics, Brit. J. Cancer, 1972, vol. 26, pp. 239–257.PubMedCrossRefGoogle Scholar
  59. 59.
    Kirkwood, T.B. and Cremer, T., Cytogerontology since 1881: A Reappraisal of August Weismann and a Review of Modern Progress, Hum. Genet., 1982, vol. 60, pp. 101–121.PubMedCrossRefGoogle Scholar
  60. 60.
    Klosterhalfen, B. and Bhardwaj, R.S., Septic Shock, Gen. Pharmacol., 1998, vol. 31, pp. 25–32.PubMedCrossRefGoogle Scholar
  61. 61.
    Korshunov, S.S., Skulachev, V.P., and Starkov, A.A., High Protonic Potential Actuates a Mechanism of Production of Reactive Oxygen Species in Mitochondria, FEBS Lett., 1997, vol. 416, pp. 15–18.PubMedCrossRefGoogle Scholar
  62. 62.
    Kruk, J., Jemiola-Rzeminska, M., and Strzalka, K., Plastoquinol and Alpha-Tocopherol Quinol Are More Active than Ubiquinol and Alpha-Tocopherol in Inhibition of Lipid Peroxidation, Chem. Phys. Lipids, 1997 vol. 87, pp. 73–80.CrossRefGoogle Scholar
  63. 63.
    Ku, H.H., Brunk, U.T., and Sohal, R.S., Relationship between Mitochondrial Superoxide and Hydrogen Peroxide Production and Longevity of Mammalian Species, Free Radical Biol. Med., 1993, vol. 15, pp. 621–627.CrossRefGoogle Scholar
  64. 64.
    Labinsky, N., Csiszar, A., Orosz, Z., et al., Comparison of Endothelial Function, O2− and H2O2 Production, and Vascular Oxidative Stress Resistance between the Longest-Living Rodent, The Naked Mole-Rat, and Mice, Am. J. Physiol. Heart Circ. Physiol., 2006, vol. 291, pp. H2698–H2704.CrossRefGoogle Scholar
  65. 65.
    Lakowski, B. and Hekimi, S., Determination of Life-Span in Caenorhabditis elegans by Four Clock Genes, Science, 1996, vol. 272, pp. 1010–1013.PubMedCrossRefGoogle Scholar
  66. 66.
    Lambert, A.J., Boysen, H.M., Buckingham, J.A., et al., Low Rates of Hydrogen Peroxide Production by Isolated Heart Mitochondria Associate with Long Maximum Lifespan in Vertebrate Homeotherms, Aging Cell, 2007, vol. 6, pp. 607–618.PubMedCrossRefGoogle Scholar
  67. 67.
    Larsson, L., Grimby, G., and Karlsson, J., Muscle Strength and Speed of Movement in Relation to Age and Muscle Morphology, J. Appl. Physiol., 1979, vol. 46, pp. 451–456.PubMedGoogle Scholar
  68. 68.
    Levitsky, D.O. and Skulachev, V.P., Carnitine: The Carrier Transporting Fatty Acyl into Mitochondria by Means of Electrochemical Gradient of H+. Biochim. Biophys. Acta, 1972, vol. 275, pp. 33–50.PubMedCrossRefGoogle Scholar
  69. 69.
    Lewis, K., Programmed Death in Bacteria, Microbiol. Mol. Biol. Rev., 2000, vol. 64, pp. 503–514.PubMedCrossRefGoogle Scholar
  70. 70.
    Lexell, J., Taylor, C.C., and Sjöström, M., What is the Cause of the Ageing Atrophy? Total Number, Size and Proportion of Different Fiber Types Studied in Whole Vastus Lateralis Muscle from 15- to 83-Year-Old Men, J. Neural Sci., 1988, vol. 84, pp. 275–294.CrossRefGoogle Scholar
  71. 71.
    Liberman, E.A., Topali, V.P., Tsofina, L.M., et al., Mechanism of Coupling of Oxidative Phosphorylation and the Membrane Potential of Mitochondria, Nature, 1969, vol. 222, pp. 1076–1078.PubMedCrossRefGoogle Scholar
  72. 72.
    Liu, X., Jiang, N., Hughes, B., et al., Evolutionary Conservation of the elk-1-Dependent Mechanism of Longevity: Loss of mclkl Increases Cellular Fitness and Lifespan in Mice, Genes Dev., 2006, vol. 19, pp. 2424–2434.CrossRefGoogle Scholar
  73. 73.
    Longo, V.D., Mitteldorf, J., and Skulachev, V.P., Programmed and Altruistic Aging, Nat. Rev. Genet., 2005, vol. 6, pp. 866–872.PubMedCrossRefGoogle Scholar
  74. 74.
    Lopez, A., Garcia, J.A., Escames, G., et al., Melatonin Protects the Mitochondria from Oxidative Damage Reducing Oxygen Consumption, Membrane Potential, and Superoxide Anion Production, J. Pineal Res., 2009, vol. 46, pp. 188–198.PubMedCrossRefGoogle Scholar
  75. 75.
    Lu, T. and Finket, T., Free Radicals and Senescence, Exp. Cell Res., 2008, vol. 314, pp. 1918–1922.PubMedCrossRefGoogle Scholar
  76. 76.
    Maroz, A., Anderson, R.F., Smith, R.A., and Murphy, M.P., Reactivity of Ubiquinone and Ubiquinol with Superoxide and the Hydroperoxyl Radical: Implications for in Vivo Antioxidant Activity, Free Radical Biol. Med., 2009, vol. 46, pp. 105–109.CrossRefGoogle Scholar
  77. 77.
    Migliaccio, E., Giorgio, M., Mele, S., et al., The p66shc Adaptor Protein Controls Oxidative Stress Response and Life Span in Mammals, Nature, 1999, vol. 402, pp. 309–313.PubMedCrossRefGoogle Scholar
  78. 78.
    Murphy, M.P. and Smith, R.A., Targeting Antioxidants to Mitochondria by Conjugation to Lipophilic Cations, Annu. Rev. Pharmacol. Toxicol., 2007, vol. 47, pp. 629–656.PubMedCrossRefGoogle Scholar
  79. 79.
    Napoli, C., Martin-Padura, I., de Nigris, F., et al., Deletion of the p66Shc Longevity Gene Reduces Systemic and Tissue Oxidative Stress, Vascular Cell Apoptosis, and Early Atherogenesis in Mice Fed a High-Fat Diet, Proc. Natl. Acad. Sci. U.S.A., 2003 vol. 100, pp. 2112–2116.PubMedCrossRefGoogle Scholar
  80. 80.
    O’Malley, Y., Fink, B.D., Ross, N.C., et al., Reactive Oxygen and Targeted Antioxidant Administration in Endothelial Cell Mitochondria, J. Biol. Chem., 2006, vol. 281, pp. 39766–39775.PubMedCrossRefGoogle Scholar
  81. 81.
    Orrenius, S., Gogvadze, V., and Zhivotovsky, B., Mitochondrial Oxidative Stress: Implications for Cell Death, Ann. Rev. Pharmacol. Toxicol., 2007, vol. 47, pp. 143–183.CrossRefGoogle Scholar
  82. 82.
    Orsini, F., Moroni, M., Contursi, C., et al., Regulatory Effects of the Mitochondrial Energetic Status on Mitochondrial p66Shc, Biol. Chem., 2006, vol. 387, pp. 1405–1410.PubMedCrossRefGoogle Scholar
  83. 83.
    Ott, M., Gogvadze, V., Orrenius, S., and Zhivotovsky, B., Mitochondria, Oxidative Stress and Cell Death, Apoptosis, 2007, vol. 12, pp. 913–922.PubMedCrossRefGoogle Scholar
  84. 84.
    Pierpaoli, W. and Bulian, D., The Pineal Aging and Death Program: Life Prolongation in Pre-Aging Pinealectomized Mice, Ann. N.Y. Acad. Sci., 2005, vol. 1057, pp. 133–144.PubMedCrossRefGoogle Scholar
  85. 85.
    Plotnikov E,Y., Vasileva, A.K., Arkhangelskaya, A.A., et al., Interrelations of Mitochondrial Fragmentation and Cell Death under Ischemia/Reoxygenation and UV-Irradiation: Protective Effects of SkQ1, Lithium Ions and Insulin, FEBS Lett., 2008, vol. 582, pp. 3117–3124.PubMedCrossRefGoogle Scholar
  86. 86.
    Pozniakovsky, A.I., Knorre, D.A., and Markova, O.V., et al., Role of Mitochondria in the Pheromone- and Amiodarone-Induced Programmed Death of Yeast, J. Cell Biol., 2005, vol. 168, pp. 257–269.PubMedCrossRefGoogle Scholar
  87. 87.
    Rockenfeller, P. and Madeo, F., Apoptotic Death of Ageing Yeast, Exp. Gerontol., 2008, vol. 43, pp. 876–881.PubMedCrossRefGoogle Scholar
  88. 88.
    Rokitskaya, T.I., Klishin, S.S., Severina, I.I., et al., Kinetic Analysis of Permeation of Mitochondria-Targeted Antioxidants across Bilayer Lipid Membranes, J. Membrane Biol., 2008, vol. 224, pp. 9–19.CrossRefGoogle Scholar
  89. 89.
    Roginsky, V., Barsukova T., Loshadkin, D., and Pliss, E., Substituted p-Hydroquinones as Inhibitors of Lipid Peroxidation, Chem. Phys. Lipids, 2003, vol. 125, pp. 49–58.PubMedCrossRefGoogle Scholar
  90. 90.
    Roginsky, V.A., Tashlitsky, V.N. and Skulachev, V.P., Chain-Breaking Antioxidant Activity of Reduced Forms of Mitochondria-Targeted Quinones, A Novel Type of Geroprotectors, Aging, 2009, vol. 1, no. 5, pp. 481–489.PubMedGoogle Scholar
  91. 91.
    Salmon, A.B., Sadighi Akha, A.A., Buffenstein, R., and Miller, R.A., Fibroblasts from Naked Mole-Rats Are Resistant to Multiple Forms of Cell Injury, but Sensitive to Peroxide, Ultraviolet Light, and Endoplasmic Reticulum Stress, J. Gerontol. A Biol. Sci. Med. Sci., 2008, vol. 63, pp. 232–241.PubMedGoogle Scholar
  92. 92.
    Saretzki, G., Murphy, M.P., and Von Zglinicki, T., MitoQ Counteracts Telomere Shortening and Elongates Lifespan of Fibroblasts under Mild Oxidative Stress, Aging Cell, 2003, vol. 2, pp. 141–143.PubMedCrossRefGoogle Scholar
  93. 93.
    Scheckhuber, C.Q., Erjavec, N., Tinazli, A., et al., Reducing Mitochondrial Fission Results in Increased Life Span and Fitness of Two Fungal Ageing Models, Nat. Cell Biol., 2007, vol. 9, pp. 99–105.PubMedCrossRefGoogle Scholar
  94. 94.
    Severin, F.F. and Hyman, A.A., Pheromone Induces Programmed Cell Death in S. cerevisiae, Curr. Biol., 2002, vol. 12, pp. R233–235.PubMedCrossRefGoogle Scholar
  95. 95.
    Severin, F.F., Meer, M.V., Smirnova, E.A., et al., Natural Causes of Programmed Death of Yeast Saccharomyces cerevisiae, Biochim. Biophys. Acta, 2008, vol. 1783, pp. 1350–1353.PubMedCrossRefGoogle Scholar
  96. 96.
    Shabalina, I.G., et al., Mitochondria-Targeted Antioxidant SkQ1 as Tool to Prevent Progeria in Mutator Mice (in preparation).Google Scholar
  97. 97.
    Skulachev, V.P., Fatty Acid Circuit as a Physiological Mechanism of Uncoupling of Oxidative Phosphorylation, FEBS Lett., 1991, vol. 294, pp. 158–162.PubMedCrossRefGoogle Scholar
  98. 98.
    Skulachev, V.P., Why Are Mitochondria Involved in Apoptosis? Permeability Transition Pores and Apoptosis as Selective Mechanisms to Eliminate Superoxide-Producing Mitochondria and Cell, FEBS Lett., 1996, vol. 397, pp. 7–10.PubMedCrossRefGoogle Scholar
  99. 99.
    Skulachev, V.P., Uncoupling: New Approaches to an Old Problem of Bioenergetics, Biochim. Biophys. Acta, 1998, vol. 1363, pp. 100–124.PubMedCrossRefGoogle Scholar
  100. 100.
    Skulachev, V.P., Programmed Death in Yeast as Adaptation?, FEBS Lett., 2002, vol. 528, pp. 23–26.PubMedCrossRefGoogle Scholar
  101. 101.
    Skulachev, V.P., Programmed Death Phenomena: from Organelle to Organism, Ann. N.Y. Acad. Sci., 2002, vol. 959, pp. 214–237.PubMedCrossRefGoogle Scholar
  102. 102.
    Skulachev, V.P., Aging and the Programmed Death Phenomena, in Topics Curr. Genet., vol. 3. Nystrom, T. and Osiewacz, H.D., Eds., Model Systems in Aging, Berlin-Heidelberg: Springer-Verlag, 2003, pp. 191–238.Google Scholar
  103. 103.
    Skulachev, V.P., Anisimov, V.N., Antonenko, Yu.N., et al., An Attempt to Prevent Senescence: A Mitochondrial Approach, Biochim. Biophys. Acta, 2009, vol. 1787, no. 5, pp.437–471.PubMedCrossRefGoogle Scholar
  104. 104.
    Skulachev, V.P. and Longo, V.D., Aging as a Mitochondria-Mediated Atavistic Program: Can Aging Be Switched off?, Ann. N.Y. Acad. Sci., 2005, vol. 1057, pp. 145–164.PubMedCrossRefGoogle Scholar
  105. 105.
    Slemmer, J.E., Shacka, J.J., Sweeney, M.I., and Weber, J.T., Antioxidants and Free Radical Scavengers for the Treatment of Stroke, Traumatic Brain Injury and Aging, Curr. Med. Chem., 2008, vol. 15, pp. 404–414.PubMedCrossRefGoogle Scholar
  106. 106.
    Smith, R.A., Porteous, C.M., Coulter, C.V., and Murphy, M.P., Targeting of an Antioxidant to Mitochondria, Europ. J. Biochem., 1999, vol. 263, pp. 709–716.PubMedCrossRefGoogle Scholar
  107. 107.
    Stadtman, E.R. Protein Oxidation and Aging, Free Radical Res., 2006, vol. 40, pp. 1250–1258CrossRefGoogle Scholar
  108. 108.
    Starkov, A.A. and Fiskum, G., Regulation of Brain Mitochondrial H2O2 Production by Membrane Potential and NAD(P)H Redox State, J. Neurochem., 2003, vol. 86, pp. 1101–1107.PubMedCrossRefGoogle Scholar
  109. 109.
    Terada, L.S., Specificity in Reactive Oxidant Signaling: Think Globally, Act Locally, J. Cell Biol., 2006, vol. 174, pp. 615–623.PubMedCrossRefGoogle Scholar
  110. 110.
    Thompson, C.R. and Kay, R.R., Cell-fate choice in Dictyostelium: Intrinsic Biases Modulate Sensitivity to DIF Signaling, Dev. Biol., 2000, vol. 227, pp. 56–64.PubMedCrossRefGoogle Scholar
  111. 111.
    Trifunovic, A., Wreeenberg, A., Falkenberg, M., et al., Premature Aging in Mice Expressing Defective Mitochondrial DNA Polymerase, Nature, 2004, vol. 429, pp. 417–423.PubMedCrossRefGoogle Scholar
  112. 112.
    Turker, M.S. and Cummings, D.J., Podospora anserina Does Not Senesce when Serially Passaged in Liquid Culture, J. Bacteriol., 1987, vol. 169, pp. 454–460.PubMedGoogle Scholar
  113. 113.
    Votyakova, T.V. and Reynolds, I.J., Δωm-Dependent and Independent Production of Reactive Oxygen Species by Rat Brain Mitochondria, J. Neurochem., 2001, vol. 79, pp. 266–277.PubMedCrossRefGoogle Scholar
  114. 114.
    Weismann, A., Essays upon Heredity and Kindred Biological Problems, Oxford: Clarendon Press, 1889.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Belozersky Institute of Physicochemical BiologyMoscow State UniversityMoscowRussia

Personalised recommendations