Advertisement

Advances in Gerontology

, Volume 1, Issue 1, pp 39–44 | Cite as

Relict microorganisms of cryolithozone as possible objects of gerontology

  • A. V. BrouchkovEmail author
  • V. P. Melnikov
  • Yu. G. Sukhovei
  • G. I. Griva
  • V. E. Repin
  • L. F. Kalenova
  • E. V. Brenner
  • A. M. Subbotin
  • Y. B. Trofimova
  • M. Tanaka
  • T. Katayama
  • M. Utsumi
Article

Abstract

Permafrost is widely distributed in the Northern Hemisphere and arrives after hundreds of thousands and millions of years. Permafrost contains live microorganisms, which are not frozen due to the relatively high ambient temperatures (from −2 to −8°C) but are immobilized; thus, their age seems to be close to the age of the permafrost. The longevity of relict microbial cells is obviously related to their mechanism of protection against heat, radiation, free radicals, and other damaging agents. A strain of Bacillus sp. was isolated from the permafrost aged about 3 million years and its 16S rDNA sequence was identified, followed by preliminary testing of the bacterial culture in Drosophila melanogaster and mice. The experiments showed immune stimulation and improvement of the physical condition. This fact, together with the age of microbial cells, suggests the consideration of relict microorganisms as objects of gerontology.

Keywords

relict microorganisms permafrost stimulation of immune system vitality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abyzov, S.S., Bobin, N.E., and Kudryashov, B.B., Microbiological Studies of Glacier in the Central Antarctica, Izv. AN SSSR (Biology Series), 1979, no. 6, pp. 828–836.Google Scholar
  2. 2.
    Aleksandrov, V.Ya., Kletki, makromolekuly i temperatura (Cells, Macromolecules, and Temperature), Leningrad: Nauka, 1975.Google Scholar
  3. 3.
    Bakulina, N.T. and Spektor, V.B., Reconstruction of Climatic Parameters of Neogene in Yakutia by Palynology Data, in: Klimat i merzlota (Climate and Permafrost), Maksimov, G.N. and Fedorov, A.N., Eds., Yakutsk: Izd. Instituta Merzlotovedeniya, 2000, pp. 21–32.Google Scholar
  4. 4.
    Baranova, Yu.P., Il’inskaya, I.A., Nikitin, V.P., et al., Miocene of the Mamontova Gora, Proc. GIN SO AN SSSR, Moscow: Nauka, 1976.Google Scholar
  5. 5.
    Brouchkov, A.V., Vlasov, A.N., Merzlyakov, V.P., and Talonov, A.V., The Effect of Local Phase Transitions on Deformation of Frozen Low Plasticity Soils, Geoekologiya. Inzhenernaya Geologiya, Gidrogeologiya, Geokriologiya, 1995, no. 5, pp. 71–77.Google Scholar
  6. 6.
    Lozina-Lozinsky, L.K., Ocherki po kriobiologii (Outlines of Cryobiology), Leningrad: Nauka, 1972.Google Scholar
  7. 7.
    Repin, V.E., Pugachev, V.G., Taranov, O.S., et al., Potential Hazard of Microorganisms-Comers from the Past, in: Yukagirskiy mamont (Yukagir Mammoth), Boyeskorov, G.G., Tikhonov, A.N., and Suzuki, N., Eds., St. Petersburg: Izd. SPbGU, 2007, pp. 183–190.Google Scholar
  8. 8.
    Ashcroft, F., Life at the Extremes, New York: Harper Collins, 2007.Google Scholar
  9. 9.
    Cairns, J., Overbaugh, J., and Miller, S., The Origin of Mutations, Nature, 1994, no. 335, pp. 142–145.Google Scholar
  10. 10.
    Clein, J.S. and Schimel, J.P., Microbial Activity of Tundra and Taiga Soils at Sub-zero Temperatures, Soil Biol. Biochem., 1995, no. 27, pp. 1231–1234.Google Scholar
  11. 11.
    Friedmann, E.I., Permafrost as Microbial Habitat, in: Viable Microorganisms in Permafrost, Russian Academy of Sciences, Pushchino, 1994.Google Scholar
  12. 12.
    Greenblatt, C.L., Davis, A., Clement, B.G., et al., Diversity of Microorganisms Isolated from Amber, Microb. Ecol., 1999, no. 38, pp. 58–68.Google Scholar
  13. 13.
    Jaenicke, R., Stability and Folding of Ultrastable Proteins, in: Eye Lens Crystallins and Enzymes from Thermophiles, FASEB J., 1996, no. 10, pp. 84–92.Google Scholar
  14. 14.
    Katayama, T., Tanaka, M., Moriizumi, J., et al., Phylogenetic Analysis of Bacteria Preserved in a Permafrost Ice Wedge for 25,000 Years, Appl. Environ. Microbiol., 2007, April, pp. 2360–2363.Google Scholar
  15. 15.
    Levy, M. and Miller, S.L., The Stability of the RNA Bases: Implications for the Origin of Life, Biochemistry, 1998, no. 95 (14), pp. 7933–7938.Google Scholar
  16. 16.
    Nicholson, W.L., Munakata, N., Horneck, G., et al., Resistance of Bacillus endospores to Extreme Terrestrial and Extraterrestrial Environments, Microbiol. Mol. Biol. Rev., 2000, no. 64, pp. 548–572.Google Scholar
  17. 17.
    Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Positions-Specific Gap Penalties and Weight Matrix Choice, Nucleic Acids Res., 1994, no. 22, pp. 4673–4680.Google Scholar
  18. 18.
    Willerslev, E. and Cooper, A., Ancient DNA, Proc. Roy. Soc. B., 2005, no. 272, pp. 3–16.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. V. Brouchkov
    • 1
    Email author
  • V. P. Melnikov
    • 2
  • Yu. G. Sukhovei
    • 2
  • G. I. Griva
    • 2
  • V. E. Repin
    • 3
  • L. F. Kalenova
    • 2
  • E. V. Brenner
    • 3
  • A. M. Subbotin
    • 2
  • Y. B. Trofimova
    • 1
  • M. Tanaka
    • 4
  • T. Katayama
    • 4
  • M. Utsumi
    • 5
  1. 1.Tyumen State Oil and Gas UniversityTyumenRussia
  2. 2.Tyumen Science CenterSiberian Branch of the Russian Academy of SciencesTyumenRussia
  3. 3.Institute of Chemical Biology and Fundamental MedicineSiberian Branch of the Russian Academy of SciencesNovosibirskRussia
  4. 4.Hokkaido UniversityHokkaidoJapan
  5. 5.Institute of Agricultural and Forest EngineeringUniversity of TsukubaTsukubaJapan

Personalised recommendations