Advertisement

Inorganic Materials: Applied Research

, Volume 10, Issue 6, pp 1429–1435 | Cite as

Factors Influencing the Fire-Resistance of Epoxy Compositions Modified with Epoxy-Containing Phosphazenes

  • I. V. TerekhovEmail author
  • E. M. Chistyakov
  • S. N. Filatov
  • I. S. Deev
  • E. V. Kurshev
  • S. L. Lonskii
POLYMER COMPOSITE MATERIALS

Abstract

The flame resistance of epoxy compositions based on resin D.E.R.-330, isomethyltetrahydrophthalic anhydride, and new epoxy-containing aryloxycyclotriphosphazenes according to GOST (State Standard) 28157-89 (analog of the test UL-94) was studied. Thermogravimetric analysis and microstructural investigations of the coke residue formed during combustion were performed. It was found that an increase in the phosphazene content of cured compositions increases significantly their flame resistance, and this is connected with both increase in the amount of porous coke residue, which is the barrier against flame propagation and flame heat transfer onto the sample, and increase in size of pores arising in coke residue. The data obtained can be used to create tough and flame-resistant composite materials for microelectronics, the aircraft and other industries.

Keywords:

microstructure flame resistance polycondensation phosphazenes epoxy resins 

Notes

FUNDING

This work was supported by Russian Foundation for Basic Research (project no. 16-33-00254/17).

REFERENCES

  1. 1.
    Song, T., Li, Z., Liu, J., and Yang, S., Synthesis, characterization and properties of novel crystalline epoxy resin with good melt flowability and flame retardancy based on an asymmetrical biphenyl unit, Polym. Sci., Ser. B, 2013, vol. 55, nos. 3–4, pp. 147–157.CrossRefGoogle Scholar
  2. 2.
    Kablov, E.N., Antipov, V.V., and Senatorova, O.G., Aluminum fiberglass SIAL-1441 laminates and cooperation with Airbus and TU Delft, Tsvetn. Met., 2013, no. 9, pp. 50–53.Google Scholar
  3. 3.
    Wu, N., Xiu, Z., and Du, J., Preparation of microencapsulated aluminum hypophosphite and flame retardancy and mechanical properties of flame-retardant ABS composites, J. Appl. Polym. Sci., 2017, vol. 134, no. 33.  https://doi.org/10.1002/app.45008 CrossRefGoogle Scholar
  4. 4.
    Liang, T., Jiang, Z., Wang, C., and Liu, J., A facile one-step synthesis of flame-retardant coatings on cotton fabric via ultrasound irradiation, J. Appl. Polym. Sci., 2017, vol. 134, no. 30.  https://doi.org/10.1002/app.45114 CrossRefGoogle Scholar
  5. 5.
    Yang, Y., Luo, H., Cao, X., Kong, W., and Cai, X., Preparation and characterization of a water resistance flame retardant and its enhancement on charring–forming for polycarbonate, J. Therm. Anal. Calorim., 2017, vol. 129, no. 2, pp. 809–820.CrossRefGoogle Scholar
  6. 6.
    Dehestani, M., Teimortashlu, E., Molaei, M., Ghomian, M., Firoozi, S., and Aghili, S., Experimental data on compressive strength and durability of sulfur concrete modified by styrene and bitumen, Data Brief, 2017, vol. 13, pp. 137–144.CrossRefGoogle Scholar
  7. 7.
    Jin, X., Sun, J., Zhang, J.S., Gu, X., Bourbigot, S., Li, H., Tang, W., and Zhang, S., Preparation of a novel intumescent flame retardant based on supramolecular interactions and its application in polyamide 11, ACS Appl. Mater. Interfaces, 2017, vol. 9, no. 29, pp. 24964–24975.CrossRefGoogle Scholar
  8. 8.
    Yashchenko, V.S., Vasilevskii, D.A., Bezruchenko, V.S., Dokuchaev, V.N., and Ol’khovik, V.K., New high-tensile thermally stable copolymers of poly(p-phenylene-1,3,4-oxadiazole), Polym. Sci., Ser. B, 2014, vol. 56, no. 3, pp. 307–313.CrossRefGoogle Scholar
  9. 9.
    Volynskii, A.L. and Bakeev N.F., A new approach to the preparation of nanocomposites based on a polymer matrix, Polym. Sci., Ser. C, 2011, vol. 53, no. 1, pp. 35–47.CrossRefGoogle Scholar
  10. 10.
    Nazarov, V.G., Stolyarov, V.P., Petrova, G.N., Gryaznov, V.I., and Buznik, V.M., Special features of surface fluorination of thermoplastic polyurethane elastomers and its effect on the polymer properties, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 5, pp. 773–778.CrossRefGoogle Scholar
  11. 11.
    Kokhanovskaya, O.A., Razdiakonova, G.I., and Likholobov, V.A., Physicochemical properties and structure of aerogel type composites on the basis of polyvinyl alcohol/carbon black, Inorg. Mater.: Appl. Res., 2017, vol. 8, no. 5, pp. 739–744.CrossRefGoogle Scholar
  12. 12.
    Horrocks, A. R. and Price, D., Fire Retardant Materials, Amsterdam: Elsevier, 2001.CrossRefGoogle Scholar
  13. 13.
    Lu, S.Y. and Hamerton, I., Recent developments in the chemistry of halogen-free flame retardant polymers, Prog. Polym. Sci., 2002, vol. 27, pp. 1661–1712.CrossRefGoogle Scholar
  14. 14.
    Liu, R. and Wang, X., Synthesis, characterization, thermal properties and flame retardancy of a novel nonflammable phosphazene-based epoxy resin, Polym. Degrad. Stab., 2009, vol. 94, pp. 617–624.CrossRefGoogle Scholar
  15. 15.
    Chen-Yang, Y.W., Lee, H.F., and Yuan, C.Y., A flame-retardant phosphate and cyclotriphosphazene-containing epoxy resin: synthesis and properties, J. Polym. Sci., Part A: Gen. Pap., 2000, vol. 38, pp. 972–981.CrossRefGoogle Scholar
  16. 16.
    Inoue, K., Kaneyuki, S., and Tanigaki, T., Polymerization of 2-(4-methacryloyloxyphenoxy) pentachlorocyclotriphosphazene, J. Polym. Sci., Part A: Gen. Pap., 1992, vol. 30, pp. 145–148.CrossRefGoogle Scholar
  17. 17.
    Medici, A., Fantin, G., Pedrini, P., Gleria, M., and Minto, F. Functionalization of phosphazenes. 1. Synthesis of phosphazene materials containing hydroxyl groups, Macromolecules, 1992, vol. 25, pp. 2569–2574.CrossRefGoogle Scholar
  18. 18.
    Yuan, W.Z., Zhu, L., Huang, H.B., Zheng, S.X., and Tang, X.Z., Synthesis, characterization and degradation of hexa-armed star-shaped poly(l-lactide)s and poly(d,l-lactide)s initiated with hydroxyl-terminated cyclotriphosphazene, Polym. Degrad. Stab., 2005, vol. 87, pp. 503–509.CrossRefGoogle Scholar
  19. 19.
    Ottman, G., Lederle, H.F., Hooks, H., and Kober, E., Aminophenoxy- and isocyanatophenoxyphosphonitriles, Inorg. Chem., 1967, vol. 6, pp. 394–395.CrossRefGoogle Scholar
  20. 20.
    Bing, B. and Li, B., Synthesis, thermal property and hydrolytic degradation of a novel star-shaped hexa[p-(carbonylglycinomethyl- ester)phenoxy]cyclotriphosphazene, Sci. China, Ser. B: Chem., 2009, vol. 52, no. 12, pp. 2186–2194.CrossRefGoogle Scholar
  21. 21.
    Brown, D.E. and Allen, C.W., Homo- and copolymerization of (methacryloyl ethenedioxy)pentachlorocyclotriphosphazene, J. Inorg. Organomet. Polym. Mater., 1991, vol. 1, no. 2, pp. 189–198.CrossRefGoogle Scholar
  22. 22.
    Terekhov, I.V., Filatov, S.N, Chistyakov, E.M., Borisov, R.S., and Kireev, V.V., Synthesis of oligomeric epoxycyclotriphosphazenes and their properties as reactive flame-retardants for epoxy resins, Phosphorus, Sulfur Silicon Relat. Elem., 2017, vol. 192, no. 5, pp. 544–554.CrossRefGoogle Scholar
  23. 23.
    Korobeinichev, O.P., Shvartsberg, V.M., and Shmakov, A.G., The chemistry of combustion of organophosphorus compounds, Russ. Chem. Rev., 2007, vol. 76, no. 11, pp. 1023–1049.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. V. Terekhov
    • 1
    Email author
  • E. M. Chistyakov
    • 2
  • S. N. Filatov
    • 2
  • I. S. Deev
    • 1
  • E. V. Kurshev
    • 1
  • S. L. Lonskii
    • 1
  1. 1.All-Russian Scientific Research Institute of Aviation MaterialsMoscowRussia
  2. 2.D. Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations