Inorganic Materials: Applied Research

, Volume 10, Issue 6, pp 1265–1281 | Cite as

Scientific and Technological Bases for Developing Cold-Resistant Steel with a Guaranteed Yield Strength of 315–750 MPa for Arctic Conditions. Part 1: Alloying Principles and Requirements for Sheet Product Structure

  • O. V. SychEmail author

Abstract—The results obtained upon choosing rational alloying and microalloying for cold-resistant steels with a guaranteed yield strength of 315–750 MPa on the basis of established interrelations between phase transformations, structure, mechanical properties, serviceability parameters, and the content of main alloying elements are presented. Quantitative requirements for various structural parameters and their maximum permissible difference throughout sheet product thickness up to 100 mm have been developed, depending on the strength category and manufacturing technology (thermomechanical treatment with accelerated cooling, quenching from separate furnace heating or rolling heating with high temperature tempering) to provide guaranteed characteristics of strength, cold resistance (impact energy KV at a testing temperature from –60 to –80°С, critical ductile-to-brittle transition temperature Тkb, and nil ductility temperature NDT), and crack resistance according to the criterion of critical crack tip opening displacement (CTOD).


low-alloy steel economically alloyed steel Arc index thermomechanical treatment quenching quenching from rolling heating tempering mechanical properties cold resistance serviceability crack resistance structure parameters ferrite bainite martensite 



This work was partly supported within the scope of the project “Arctic Steel” according to state contract with the Ministry of Industry and Trade of the Russian Federation no. 16411.1810190019.09.003 of October 20, 2016.


  1. 1.
    Gorynin, I.V., Rybin, V.V., Malyshevskii, V.A., and Khlusova, E.I., Alloying principles, phase transformations, structure and properties of low-temperature weldable shipbuilding steels, Met. Sci. Heat Treat., 2007, vol. 49, nos. 1–2, pp. 3–9.Google Scholar
  2. 2.
    Gorynin, I.V., Rybin, V.V., Malyshevskii, V.A., and Khlusova, E.I., Cold-resistant steels for technical means for development of the Arctic shelf, Vopr. Materialoved., 2009, no. 3 (59), pp. 108–126.Google Scholar
  3. 3.
    Orlov, V.V., Principles of controlled formation of nanosized structural elements in pipe steels upon significant plastic deformations, Inorg. Mater.: Appl. Res., 2012, vol. 3, no. 6, pp. 466–474.CrossRefGoogle Scholar
  4. 4.
    Kruglova, A.A., Orlov, V.V., Sych, O.V., and Khlusova, E.I., Improvement of chemical composition and production regimes for manufacture of K65–K70 (X80–X90) strip based on simulation, Metallurgist, 2013, vol. 57, nos. 1–2, pp. 113–122.CrossRefGoogle Scholar
  5. 5.
    Korotovskaya, S.V., Orlov, V.V., and Khlusova, E.I., Control of structure formation during thermomechanical treatment of shipbuilding and pipe steels of unified chemical composition, Metallurgist, 2014, vol. 58, nos. 5–6, pp. 406–414.CrossRefGoogle Scholar
  6. 6.
    Zisman, A.A., Soshina, T.V., and Khlusova, E.I., Maps of structure changes in austenite of low carbon steel 09CrNi2MoCuV during hot deformation and their use to improve industrial technologies, Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 6, pp. 570–577.CrossRefGoogle Scholar
  7. 7.
    Pazilova, U.A., Khlusova, E.I., and Kniaziuk, T.V., Influence of hot plastic deformation modes on the structure and properties of quenched hot rolled economically alloyed high-strength steel, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 6, pp. 1051–1059.CrossRefGoogle Scholar
  8. 8.
    Gusev, M.A., Il’in, A.V., and Larionov, A.V., Certification of shipbuilding materials for Arctic ships, Sudostroenie, 2014, no. 5 (816), pp. 39–43.Google Scholar
  9. 9.
    Kazakov, A.A. and Kiselev, D.V., Modern methods for quality assessment of the structure of metals based on panoramic studies using the Thixomet image analyzer, in Perspektivnye materialy: Uchebnoe posobie (Advanced Materials: Manual), Tolyatti: Tol’yat. Gos. Univ., 2013, vol. 5.Google Scholar
  10. 10.
    Kazakov, A.A., Kazakova, E.I., Kiselev, D.V., and Motovilina, G.D., Development of methods for evaluation of the microstructural heterogeneity of tubular steels, Chern. Met., 2009, no. 12, pp. 12–15.Google Scholar
  11. 11.
    Khlusova, E.I., Golosienko, S.A., Motovilina, G.D., and Pazilova, U.A., Influence of doping on the structure and properties of high-strength cold-resistant steel after thermal and thermomechanical processing, Vopr. Materialoved., 2007, no. 1 (49), pp. 20–31.Google Scholar
  12. 12.
    Golosienko, S.A., Motovilina, G.D., and Khlusova, E.I., Influence of the structure formed during quenching on the properties of high-strength cold-resistant steel after tempering, Vopr. Materialoved., 2008, no. 1 (53), pp. 33–46.Google Scholar
  13. 13.
    Sych, O.V., Khlusova, E.I., Golosienko, S.A., Orlov, V.V., Mileikovskii, A.B., Galkin, V.V., Denisov, S.V., Steka-nov, P.A., and Malakhov, N.V., RF Patent 2465346, Byull. Izobret., 2012, no. 30.Google Scholar
  14. 14.
    Malyshevskii, V.A., Khlusova, E.I., Golosienko, S.A., Khomyakova, N.F., Milyuts, V.G., Pavlova, A.G., Pazilova, U.A., Afanas’ev, S.Yu., and Gusev, A.A., RF Patent 2507295, Byull. Izobret., 2014, no. 5.Google Scholar
  15. 15.
    Sych, O.V., Orlov, V.V., Khlusova, E.I., Yashina, E.A., Golubeva, M.V., Yakovleva, E.A., Mitrofanov, A.V., Sychov, O.N., and Gorodetskii, V.I., RF Patent 2653748, Byull. Izobret., 2018, no. 14.Google Scholar
  16. 16.
    Sych, O.V., Khlusova, E.I., Golosienko, S.A., Yashina, E.A., Pazilova, U.A., Novoskol’tsev, N.S., Belyaev, V.A., Masanin, N.I., and Gusev, M.A., RF Patent Application 2016150730, 2016.Google Scholar
  17. 17.
    Zisman, A.A., Petrov, S.N., and Ptashnik, A.V., Quantitative verification of high-strength alloyed steel bainite-martensite structures by scanning electron microscopy methods, Metallurgist, 2015, vol. 58, nos. 11–12, pp. 1019–1024.CrossRefGoogle Scholar
  18. 18.
    Kang, J.-Y., Kim, D.H., Baik, S.-I., Ahn, T.-H., Kim, Y.-W., Han, H.N., Oh, K.H., Lee, H.-C., and Han, S.H., Phase analysis of steels by grain-averaged EBSD Functions, ISIJ Int., 2011, vol. 51, no. 1, pp. 130–136.CrossRefGoogle Scholar
  19. 19.
    Il’in, A.V. and Gusev, M.A., New methods for analysis of the resistance to the destruction of metal pipes for main gas pipelines, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2013, no. 6 (1362), pp. 47–60.Google Scholar
  20. 20.
    Sych, O.V., Gusev, M.A., Bashaev, V.K., Motovilina, G.D., and Ryabov, V.V., Cold resistance of high-strength alloy steel with a yield strength of 500 MPa, Nauchno-Tekh. Sb. Ross. Morsk. Reg. Sudokhodstva, 2014, no. 37, pp. 29–38.Google Scholar
  21. 21.
    Sych, O.V., Kruglova, A.A., Schastlivtsev, V.M., Tabatchikova, T.I., and Yakovleva, I.L., Effect of vanadium on the precipitation strengthening upon tempering of a high-strength pipe steel with different initial structure, Phys. Met. Metallogr., 2016, vol. 117, no. 12, pp. 1270–1280.CrossRefGoogle Scholar
  22. 22.
    Wilson, J.A., Dispersion strengthening in vanadium microalloyed steels processed by simulated thin slab casting and direct charging. Part 2: Chemical characterization of dispersion strengthening precipitates, Mater. Sci. Technol., 2007, vol. 23, pp. 509–518.CrossRefGoogle Scholar
  23. 23.
    Golosienko, S.A., Soshina, T.V., and Khlusova, E.I., New high-strength cold-resistant steels used in the Arctic conditions, Proizvod. Prokata, 2014, no. 2, pp. 17–24.Google Scholar
  24. 24.
    Sych, O.V., Orlov, V.V., Kruglova, A.A., and Khlusova, E.I., Change of the structure of high-strength pipe steel of K70–K80 durability class under various modes of high-temperature drawing after thermomechanical treatment, Vopr. Materialoved., 2011, no. 1 (65), pp. 89–99.Google Scholar
  25. 25.
    Sych, O.V., Golubeva, M.V., and Khlusova, E.I., Development of cold-resistant welded steel of strength category 690 MPa for heavy-duty equipment operated in arctic conditions, Tyazh. Mashinostr., 2018, no. 4, pp. 17–25.Google Scholar
  26. 26.
    Odesskii, P.D. and Smirnov, L.A., Vanadium and niobium in microalloyed steel for metal structures, Steel Transl., 2005, vol. 35, no. 6, pp. 63–73.Google Scholar
  27. 27.
    Fernández, A.I., Uranga, P., López, B., and Rodrigues-Ibabe, J.M., Dynamic recrystallization behavior covering a wide austenite grain size range in Nb and Nb–Ti microalloyed steels, Mater. Sci. Eng., A, 2003, vol. 361, pp. 367–376.CrossRefGoogle Scholar
  28. 28.
    Soshina, T.V., Zisman, A.A., and Khlusova, E.I., The effect of microalloying by niobium on recrystallization processes in austenite of low-carbon alloyed steels, Vopr. Materialoved., 2013, no. 1 (73), pp. 31–36.Google Scholar
  29. 29.
    Nastich, S.Yu., Effect of bainite component morphology on the microstructure of X70 low-alloyed steel on thick plate cold resistance, Metallurgist, 2012, vol. 56, nos. 3–4, pp. 196–204.CrossRefGoogle Scholar
  30. 30.
    Kazakov, A.A., Kiselev, D.V., Kazakova, E.I., Kurochkina, O.V., Khlusova, E.I., and Orlov, V.V., Influence of structural anisotropy in ferritic-bainitic steel strips after thermo-mechanical treatment on their mechanical properties, Chern. Met., 2010, no. 6, pp. 7–13.Google Scholar
  31. 31.
    Pyshmintsev, I.Yu., Boryakova, A.N., Smirnov, M.A., and Dement’eva, N.V., Properties of low-carbon steels containing bainite in the structure, Metallurgist, 2009, vol. 53, nos. 11–12, pp. 735–742.CrossRefGoogle Scholar
  32. 32.
    Petrov, R., Kestens, L., Wasilkowska, A., and Houbaert, Y., Microstructure and texture of a lightly deformed TRIP-assisted steel characterized by means of the EBSD technique, Mater. Sci. Eng., A, 2007, vol. 447, pp. 285–297.CrossRefGoogle Scholar
  33. 33.
    Wright, S.I., Nowell, M.M., and Field, D.P., A review of strain analysis using electron backscatter diffraction, Microsc. Microanal., 2011, vol. 17, pp. 316–329.CrossRefGoogle Scholar
  34. 34.
    Rybin, V.V., Malyshevskii, V.A., and Semicheva, T.G., Development of the theory of secondary hardening in the creation of high-strength vessel steel grades, Vopr. Materialoved., 2005, no. 2 (42), pp. 55–68.Google Scholar
  35. 35.
    Lambert-Perlade, A., Gourgues, A.F., Besson, J., et al., Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of high-strength low alloy steel, Metall. Mater. Trans. A, 2004, vol. 35, pp. 1039–1053.CrossRefGoogle Scholar
  36. 36.
    Guo, Z., Lee, C.S., and Morris, J.W., Jr., On coherent transformations in steel, Acta Mater., 2004, vol. 52, pp. 5511–5518.CrossRefGoogle Scholar
  37. 37.
    Hwang, B., Lee, C.G., and Kim, S.-J., Low-temperature toughening mechanism in thermomechanically processed high-strength low-alloy steels, Metall. Mater. Trans. A, 2011, vol. 42, no. 3, pp. 717–728.CrossRefGoogle Scholar
  38. 38.
    Zolotorevskii, N.Yu., Zisman, A.A., Panpurin, S.N., Titovets, Yu.F., Golosienko, S.A., and Khlusova, E.I., Effect of the grain size and deformation substructure of austenite on the crystal geometry of bainite and martensite in low-carbon steels, Met. Sci. Heat Treat., 2014, vol. 55, nos. 9–10, pp. 550–558.CrossRefGoogle Scholar
  39. 39.
    Schastlivtsev, V.M., Blind, L.B., Rodionov, D.P., and Yakovleva, N.L., The structure of the martensite package in structural steels, Fiz. Met. Metalloved., 1988, vol. 66, pp. 759–769.Google Scholar
  40. 40.
    Morito, S., Huang, X., Furuhara, T., Maki, T., and Hansen, N., The morphology and crystallography of lath martensite in alloy steels, Acta Mater., 2006, vol. 54, pp. 5323–5331.CrossRefGoogle Scholar
  41. 41.
    Takayama, N., Miyamoto, G., and Furuhara, T., Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel, Acta Mater., 2012, vol. 60, pp. 2387–2396.CrossRefGoogle Scholar
  42. 42.
    Zisman, A.A., Zolotorevsky, N.Y., Petrov, S.N., Khlusova, E.I., and Yashina, E.A., Panoramic crystallographic analysis of structure evolution in low-carbon martensitic steel under tempering, Met. Sci. Heat Treat., 2018, vol. 60, nos. 3–4, pp. 142–149.CrossRefGoogle Scholar
  43. 43.
    Miyamoto, G., Iwata, N., Takayama, N., and Furuhara, T., Quantitative analysis of variant selection in ausformed lath martensite, Acta Mater., 2012, vol. 60, pp. 1139–1148.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.National Research Center Kurchatov Institute—Central Research Institute of Structural Materials PrometeySt. PetersburgRussia

Personalised recommendations