Inorganic Materials: Applied Research

, Volume 10, Issue 6, pp 1333–1337 | Cite as

Modeling of Steel Hardening Process at Thermal and Mechanical Treatment

  • A. S. Oryshchenko
  • V. A. MalyshevskyEmail author
  • E. A. Shumilov

Abstract—The article deals with the modeling of thermomechanical processing of high-strength steels on the Gleeble 3800 research complex, simulating thermomechanical processing with various temperature and deformation parameters of rolling and with accelerated cooling to a predetermined temperature. The identity of steel hardening processes at the Gleeble 3800 complex and specialized rolling mills and also the possibility of obtaining steels of unified chemical composition are shown.


thermomechanical processing plastic deformation nanostructuring fragmentation alloying chemical composition unification 



  1. 1.
    Koval’chuk, M.V., Oryshchenko, A.S., Malyshevskii, V.A., Petrov, S.N., and Shumilov, E.A., Problems of creation of technological economical-alloyed steels for arctic constructions, Vopr. Materialoved., 2017, no. 2 (90), pp. 7–16.Google Scholar
  2. 2.
    Koval’chuk, M.V., Oryshchenko, A.S., Malyshevskii, V.A., Petrov, S.N., and Shumilov, E.A., Unification of the chemical composition of high-strength steels for shipbuilding, Vopr. Materialoved., 2018, no. 1 (93), pp. 7–14.Google Scholar
  3. 3.
    Kozlov, E.V., Popova, N.A., and Koneva, N.A., Fragmented substructure formed in bcc steels during deformation, Bull. Russ. Acad. Sci.: Phys., 2004, vol. 68, pp. 1587–1596.Google Scholar
  4. 4.
    Bernshtein, M.L., Termomekhanicheskaya obrabotka stali (Thermomechanical Treatment of Steel), Moscow: Metallurgiya, 1983, vol. 2.Google Scholar
  5. 5.
    Gorynin, I.V. and Khlusova, E.I., Nanostructured steels for developing the shelf of the Arctic Ocean, Herald Russ. Acad. Sci., 2010, vol. 80, no. 6, pp. 507–513.CrossRefGoogle Scholar
  6. 6.
    Hanlon, D.N., Sietsma, J., and van der Zwaag, S., The effect of plastic deformation of austenite on the kinetics of subsequent ferrite formation, ISIJ Int., 2001, vol. 41, no. 9, pp. 1028–1036.CrossRefGoogle Scholar
  7. 7.
    Zisman, A.A., Petrov, S.N., and Ptashnik, A.V., Quantitative verification of high-strength alloyed steel bainite-martensite structures by scanning electron microscopy methods, Metallurgist, 2015, vol. 58, nos. 11–12, pp. 1019–1024.CrossRefGoogle Scholar
  8. 8.
    Kruglova, A.A., Orlov, V.V., Khlusova, E.I., and Golovanov, A.V., Influence of thermomechanical processing parameters on the structure and properties of hotrolled thick-plate low-alloy steel of improved weldability, Proizvod. Prokata, 2009, no. 3, pp. 21–28.Google Scholar
  9. 9.
    Khlusova, E.I., Kruglova, A.A., and Orlov, V.V., Effect of hot plastic deformation in the austenite interval on structure formation in low-alloyed low-carbon steel, Met. Sci. Heat Treat., 2007, vol. 49, nos. 11–12, pp. 545–560.CrossRefGoogle Scholar
  10. 10.
    Khlusova, E.I., Mikhailov, M.S., and Orlov, V.V., Features of the structure formation of thick steel at thermomechanical treatment, Deform. Razrushenie Mater., 2007, no. 6, pp. 18–25.Google Scholar
  11. 11.
    Korotovskaya, S.V., Nesterova, E.V., Orlov, V.V., and Khlusova, E.I., Influence of the parameters of plastic deformation on formation of ultrafine-grained structure in low-alloyed bainitic steels, Vopr. Materialoved., 2011, no. 1 (65), pp. 100–109.Google Scholar
  12. 12.
    Oryshchenko, A.S., Malyshevskii, V.A., Petrov, S.N., and Shumilov, E.A., Relation between the degree of alloying, structure, and mechanical properties of high-strength steel, Steel Transl., 2018, vol. 48, no. 3, pp. 143–148.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. S. Oryshchenko
    • 1
  • V. A. Malyshevsky
    • 1
    Email author
  • E. A. Shumilov
    • 1
  1. 1.National Research Center Kurchatov Institute—CRISM PrometeySt. PetersburgRussia

Personalised recommendations