Advertisement

Inorganic Materials: Applied Research

, Volume 10, Issue 6, pp 1477–1491 | Cite as

The Basic Principles of Assessment of the Structural Integrity and Lifetime of the BN-Type Fast Neutron Reactor Components Considering Material Degradation

  • B. Z. MargolinEmail author
  • A. G. Gulenko
  • A. A. Buchatsky
  • A. A. Sorokin
  • O. Yu. VilenskyEmail author
  • B. A. Vasilev
STRUCTURAL AND TECHNOLOGICAL STRENGTH AND EFFICIENCY OF MATERIALS
  • 2 Downloads

Abstract

The paper presents an overview of the basic principles of extending the lifetime of BN-600 fast reactors. These principles based on analysis of the main in-service mechanisms of material embrittlement and damage underlie the normative documents of the Rosatom State Corporation and were used by the authors in their developments for justification of the design lifetime of the BN-800 and BN-1200 fast reactors. The so-called critical events and limit states that determine the structural integrity and lifetime of fast reactor components have been formulated. On the basis of the results of this work, the repost “Basic Principles for Lifetime and Structural Integrity Assessment of BN-600 and BN-800 Fast Reactor Components with Regard to Material Degradation” was made at the International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development (FR17) held by the IAEA in Yekaterinburg in 2017.

Keywords:

fast reactor structural integrity embrittlement and damage mechanisms 

Notes

REFERENCES

  1. 1.
    Vasil’ev, B.A., Vilenskii, O.Yu., Kaidalov, V.B., Kama-nin, Yu.L., Margolin, B.Z., and Gulenko, A.G. Development of methodology and rationale of extension period of housing exploitation and irreplaceable intracorporeal elements of BN-600 reactor up to 45 years, Izv. Vyssh. Uchebn. Zaved., Yad. Energ., 2011, no. 1, pp. 32–43.Google Scholar
  2. 2.
    Margolin, B., Shvetsova, V., and Gulenko, A., Radiation embrittlement modeling in multi-scale approach to brittle fracture of RPV steels, Int. J. Fract., 2013, vol. 179, pp. 87–108.CrossRefGoogle Scholar
  3. 3.
    Kursevich, I.P., Margolin, B.Z., Prokoshev, O.Yu., and Kokhonov, V.I., Mechanical properties of austenite steels at neutron irradiation: effect of different factors, Vopr. Materialoved., 2006, no. 4 (48), pp. 55–68.Google Scholar
  4. 4.
    Sorokin, A.A., Margolin, B.Z., Kursevich, I.P., et al., Effect of neutron irradiation on tensile properties of materials for pressure vessel internals of WWER type reactors, J. Nucl. Mater., 2014, vol. 444, pp. 373–384.CrossRefGoogle Scholar
  5. 5.
    Margolin, B.Z. and Sorokin, A.A., A physical-mechanical model of ductile fracture in irradiated austenitic steels, Strength Mater., 2013, vol. 45, no. 2, pp. 125–143.CrossRefGoogle Scholar
  6. 6.
    Margolin, B., Sorokin, A., Smirnov, V., and Potapova, V., Physical and mechanical modeling of neutron irradiation effect on ductile fracture. Part 1. Prediction of fracture strain and fracture toughness of austenitic steels, J. Nucl. Mater., 2014, vol. 452, nos. 1–3, pp. 595–606.CrossRefGoogle Scholar
  7. 7.
    Minkin, A.I., Margolin, B.Z., Smirnov, V.I., and Sorokin, A.A., Improvement of a model to predict static fracture toughness of austenitic materials under neutron irradiation, Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 6, pp. 617–625.CrossRefGoogle Scholar
  8. 8.
    Margolin, B., Sorokin, A., Shvetsova, V., et al., The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness, J. Nucl. Mater., 2016, vol. 480, pp. 52–68.CrossRefGoogle Scholar
  9. 9.
    Porter, D.L., Ferrite formation in neutron-irradiated type 304L stainless steel, J. Nucl. Mater., 1979, vol. 79, no. 2, pp. 406–411.CrossRefGoogle Scholar
  10. 10.
    Margolin, B., Sorokin, A., and Kursevich, I., FCC-to-BCC phase transformation in austenitic steels for WWER internals with significant swelling, Proc. Int. Symp. Fontevraud 7, Avignon, France, September 26–30,2010, Avignon, 2010, no. O12-A097-T02.Google Scholar
  11. 11.
    Margolin, B.Z., Kursevich, I.P., Sorokin, A.A., Lapin, A.N., Kokhonov, V.I., and Neustroev, V.S., Embrittlement and fracture toughness of highly irradiated austenitic steels for vessel internals of WWER type reactors. Part 1. Relation between irradiation swelling and irradiation embrittlement. Experimental results, Strength Mater., 2009, vol. 41, pp. 593–602.CrossRefGoogle Scholar
  12. 12.
    Margolin, B.Z., Kursevich, I.P., Sorokin, A.A., Vasina, N.K., and Neustroev, V.S., Embrittlement and fracture toughness of highly irradiated austenitic steels for vessel internals of WWER type reactors. Part 2. Relation between irradiation swelling and irradiation embrittlement. Physical and mechanical behavior, Strength Mater., 2010, vol. 42, no. 2, pp. 144–153.CrossRefGoogle Scholar
  13. 13.
    Fish, R.L. and Hunter, C.W., STP611 tensile properties of fast reactor irradiated type 304 stainless steel, in Irradiation Effects on The Microstructure and Properties of Metals, Shober, F., Ed., West Conshohocken, PA: ASTM Int., 1976, pp. 119–138.Google Scholar
  14. 14.
    Fish, R.L., Straalsund, J.L., et al., STP529: swelling and tensile property evaluations of high-fluence EBR-II thimbles, in Effects of Radiation on Substructure and Mechanical Properties of Metals and Alloys, Moteff, J., Ed., West Conshohocken, PA: ASTM Int., 1973, pp. 149–164.Google Scholar
  15. 15.
    Claudson, T.T. and Barker, R.W., The effects of fast flux irradiation on the mechanical properties and dimensional stability of stainless steel, Nucl. Appl. Technol., 1970, vol. 9, pp. 10–23.CrossRefGoogle Scholar
  16. 16.
    Kursevich, I.P., Margolin, B.Z., Prokoshev, O.Yu., Smirnov, V.I., Fedorova, V.A., Nesterova, E.V., and Petrov, S.N., Effect of long-term operational aging on the mechanical properties and microstructure of austenitic 18Cr-9Ni steel and the weld metal, Inorg. Mater.: Appl. Res., 2013, vol. 4, no. 6, pp. 562–574.CrossRefGoogle Scholar
  17. 17.
    Vasina, N.K., Margolin, B.Z., Gulenko, A.G., and Kursevich, I.P., Radiation swelling of austenite steels: influence of various factors. Experimental data processing and wording of defining equations, Vopr. Materialoved., 2006, no. 4 (48), pp. 69–89.Google Scholar
  18. 18.
    Margolin, B.Z., Murashova, A.I., and Neustroev, V.S., Analysis of the influence of type of stress state on radiation swelling and radiation creep of austenitic steels, Strength Mater., 2012, vol. 44, no. 3, pp. 227–240.CrossRefGoogle Scholar
  19. 19.
    Margolin, B.Z., Varovin, A.Ya., Minkin, A.I., et al., Determination of in-service change in the geometry of WWER-1000 core baffle: calculations and measurements, Proc. Conf. on Contribution of Materials Investigations and Operating Experience to LWRs’ Safety, Performance and Reliability (Fontevraud 8), Avignon, September 15–18,2014, Avignon, 2014, 143-T02.Google Scholar
  20. 20.
    Margolin, B.Z., Gulenko, A.G., Buchatskii, A.A., Nesterova, E.V., and Kashtanov, A.D., Study of the effect of thermal aging on durability and plasticity of Kh18N9 steel, Inorg. Mater.: Appl. Res., 2011, vol. 2, no. 6, pp. 633–639.CrossRefGoogle Scholar
  21. 21.
    RCC-MR: Design and construction rules for mechanical components of FBR Nuclear Islands, Appendix A16,Edition 2002, Paris: Assoc. Fr. Regles Conception Constr. Mater. Chaudieres Electro-Nucl., 2002.Google Scholar
  22. 22.
    Margolin, B.Z., Gulenko, A.G., Kursevich, I.P., and Buchatskii, A.A., Modeling for fracture in materials under long-term static creep loading and neutron irradiation. Part 1. A physico-mechanical model, Strength Mater., 2006, vol. 38, no. 3, pp. 221–233.CrossRefGoogle Scholar
  23. 23.
    Margolin, B.Z., Gulenko, A.G., and Buchatsky, A.A., Proc. ASME 2009 Pressure Vessels and Piping Division Conf., July 26–30,2009, Prague, 2009, no. PVP2009-77084.Google Scholar
  24. 24.
    Karzov, G.P., Margolin, B.Z., and Shvetsova, V.A., Fiziko-mekhanicheskoe modelirovanie protsessov razrusheniya (Physical-Mechanical Modeling of Destruction Processes), St. Petersburg: Politekhnika, 1993.Google Scholar
  25. 25.
    Gulenko, A.G., Margolin, B.Z., Buchatskii, A.A., and Nuzhdov, A.A., Construction of theoretical curves of the long-term strength for neutron-irradiated austenitic steels Kh18N9 and 08Kh16N11M3, Inorg. Mater.: Appl. Res., 2018, vol. 9, no. 6, pp. 1254–1262.CrossRefGoogle Scholar
  26. 26.
    Margolin, B.Z., Gulenko, A.G., Kursevich, I.P., and Buchatskii, A.A., Modeling for fracture in materials under long-term static creep loading and neutron irradiation. Part 2. Prediction of creep rupture strength for austenitic materials, Strength Mater., 2006, vol. 38, no. 5, pp. 449–457.CrossRefGoogle Scholar
  27. 27.
    Margolin, B.Z., Gulenko, A.G., Buchatskii, A.A., and Balakin, S.M., Modeling for fracture in materials under long-term static creep loading and neutron irradiation. Part 3. Crack growth rate prediction for austenitic materials, Strength Mater., 2006, vol. 38, no. 6, pp. 565–574.CrossRefGoogle Scholar
  28. 28.
    PNAE G-7-002-86: Normy rascheta na prochnost’ obo-rudovaniya i truboprovodov atomnykh energeticheskikh ustanovok (PNAE G-7-002-86: Rules and Regulations for Durability of Equipment and Pipelines of Nuclear Power Plants), Moscow: Energoatomizdat, 1989.Google Scholar
  29. 29.
    Margolin, B.Z., Buchatskii, A.A., Gulenko, A.G., Fedorova, V.A., and Filatov, V.M., A method for predicting fracture resistance of material in cyclic loading under viscoelastoplastic deformation and neutron irradiation conditions, Strength Mater., 2008, vol. 40, no. 6, pp. 601–614.CrossRefGoogle Scholar
  30. 30.
    Filatov, V.M., Anikhimovskii, Yu.A., Solov’ev, D.V., and Vasyutin, A.N., Testing for prolonged low-cycle fatigue under nonisothermic loading, Zavod.Lab., 1975, vol. 11, no. 4, pp. 472–475.Google Scholar
  31. 31.
    Troshchenko, V.T., Deformirovanie i razrushenie metallov pri mnogotsiklovom nagruzhenii (Deformation and Destruction of Metals in Multicycle Loading), Kiev: Naukova Dumka, 1987.Google Scholar
  32. 32.
    Kogaev, V.P., Makhutov, N.A., and Gusenkov, A.P., Raschety detalei mashin i konstruktsii na prochnost’ i dolgovechnost’ (Calculation of Strength and Lifetime of Components for Machines and Constructions), Moscow: Mashinostroenie, 1985.Google Scholar
  33. 33.
    Vilensky, O.Yu., Krylov, A.N., Osipov, S.L., Osetrov, D.L., Rogozhkin, S.A., Margolin, B.Z., Prokoshev, O.Yu., Pozdnyakov, M.L., and Gulenko, A.G., Computational and experimental studies of the causes of crack network formation in the area of the heat exchanger tube sheet in the BN-600 reactor, Nucl. Energy Technol., 2015, vol. 1, no. 2, pp. 83–87.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • B. Z. Margolin
    • 1
    Email author
  • A. G. Gulenko
    • 1
  • A. A. Buchatsky
    • 1
  • A. A. Sorokin
    • 1
  • O. Yu. Vilensky
    • 2
    Email author
  • B. A. Vasilev
    • 2
  1. 1.National Research Center Kurchatov Institute—Central Research Institute of Structural Materials PrometeySt. PetersburgRussia
  2. 2.AO OKBM Afrikantov Experimental Design OfficeNizhny NovgorodRussia

Personalised recommendations