Advertisement

Inorganic Materials: Applied Research

, Volume 10, Issue 6, pp 1390–1393 | Cite as

Strength Improvement of Metals Produced by Selective Laser Melting of Powders

  • B. K. BarakhtinEmail author
  • A. S. Zhukov
  • V. V. Bobyr
  • I. V. Shakirov
  • P. A. Kuznetsov
FUNCTIONAL MATERIALS
  • 5 Downloads

Abstract—

Standard samples for mechanical tests have been produced by selective laser melting (SLM) of metal powders of various chemical compositions. It has been determined that strength properties of all SLM samples are higher than those of solid samples of the same chemical composition. It has been established that the factors of strength improvement are vapor condensed nanoparticles above the melting zone and ultrafine grain structure formed at the stage of crystallization.

Keywords:

additive technologies selective laser melting metal powders strengthening mechanism 

Notes

ACKNOWLEDGMENTS

Experimental studies were performed using the equipment of the Shared Research Facility Composition, Structure, and Properties of Structural and Functional Materials (NRC Kurchatov Institute—CRISM Prometey) and supported by the Ministry of Education and Science (unique identifier: RFMEF159517X0004).

FUNDING

This work was supported by the Russian Science Foundation: Fundamental and Pilot Studies in the Top Priority Fields (project no. 15-19-00210).

REFERENCES

  1. 1.
    Grigor’yants, A.G., Kolchanov, D.S., Malov, I.E., and Tret’yakov, R.S., Selective laser melting of metallic powders, growing of thin-walled and grid structures, Tekhnol. Mashinoter., 2015, no. 10, pp. 6–11.Google Scholar
  2. 2.
    Barakhtin, B.K., Bobyr’, V.V., Voznyuk, A.V., Deev, A.A., Zhukov, A.S., and Kuznetsov, P.A., Optimization of technological parameters and determination of selective laser melting modes of 316L-based composition powder, Vopr. Materialoved., 2017, no. 2 (90), pp. 146–152.Google Scholar
  3. 3.
    Stucker, B., Rosen, D.W., and Gibson, I., Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing, New York: Springer-Verlag, 2009.Google Scholar
  4. 4.
    Sedlaka, J., Rican, D., Piska, M., and Rozkosny, L., Study of materials produced by powder metallurgy using classical and modern additive laser technology, Procedia Eng., 2015, vol. 100, pp. 1232–1241.CrossRefGoogle Scholar
  5. 5.
    Shishkovskii, I.V., Lazernyi sintez funktsional’no-gradientnykh mezostruktur i ob”emnykh izdelii (Laser Synthesis of Functional Gradient Mesostructures and 3D Products), Moscow: Fizmatlit, 2009.Google Scholar
  6. 6.
    Zhukov, A., Barakhtin, B., and Kuznetsov, P., Study of strength characteristics of steel specimens after selective laser melting of powder materials 17-4PH, 316L, 321, Phys. Procedia, 2017, vol. 89, pp. 179–186.CrossRefGoogle Scholar
  7. 7.
    Kuznetsov, P.A., Zisman, A.A., Petrov, S.N., and Goncharov, I.S., Structure and mechanical properties of austenitic 316L steel produced by selective laser melting, Russ. Metall. (Engl. Transl.), 2016, vol. 2016, no. 10, pp. 930–934.CrossRefGoogle Scholar
  8. 8.
    Barakhtin, B.K., Zhukov, A.S., Staritsyn, M.V., and Verhsinina, N.A., The structure of aggregation obtained by selective laser melting of iron powder, in Fiziko-khimicheskie aspekty izucheniya klasterov, nano-struktur i nanomaterialov (Physical-Chemical Aspects in the Study of Clusters, Nanostructures, and Nanomaterials), Tver: Tversk. Gos. Univ., 2017, no. 9, pp. 71–80.Google Scholar
  9. 9.
    Saeidi, K., Gao, X., Zhong, Y., and Shen, Z.J., Hardened austenite steel with columnar sub-grain structure formed by laser melting, Mater. Sci. Eng., A, 2015, vol. 625, pp. 221–229.CrossRefGoogle Scholar
  10. 10.
    Postnikov, V.S. and Kalashnikova, M.S., The surface layer structure after laser alloying of low-carbon constructional steels, Fiz. Khim. Obrab. Mater., 1999, no. 6, pp. 47–51.Google Scholar
  11. 11.
    Belova, S.A., Kalashnikova, M.S., and Postnikov, V.S., Formation of the structure of surface layers of steels by laser alloying, Vestn. Perm. Gos. Tekh. Univ., Mashinostr., Materialoved., 2010, no. 2 (12), pp. 93–105.Google Scholar
  12. 12.
    Panin, V.E., Pinchuk, V.G., Korotkevich, S.V., and Panin, S.V., Multiscaling of lattice curvature on friction surfaces of metallic materials as a basis of their wear mechanism, Phys. Mesomech., 2017, vol. 20, no. 1, pp. 69–77.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • B. K. Barakhtin
    • 1
    Email author
  • A. S. Zhukov
    • 1
  • V. V. Bobyr
    • 1
  • I. V. Shakirov
    • 1
  • P. A. Kuznetsov
    • 1
  1. 1.National Research Center Kurchatov Institute—Central Research Institute of Structural Materials PrometeySt. PetersburgRussia

Personalised recommendations