Skip to main content
Log in

Biocompatibility of Biodegradable Polymer Films Based on Poly(lactic-co-glycolic acid) of Various Molecular Weights

  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Various poly(lactic-co-glycolic acid)-based polymeric films with various molecular weights were obtained. The mechanical characteristics of these films were investigated. It was shown that the obtained polymer films do not have a short-term toxic effect on mammalian cells. The percentage of actively dividing cells on such polymer films is 1.5–3.0 times higher than when grown on culture glass, and, accordingly, the cell layer is formed faster. The obtained poly(lactic-co-glycolic acid)-based polymer films are biocompatible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Zia, K.M., Noreen, A., Zuber, M., Tabasum, S., and Mujahid, M., Recent developments and future prospects on bio-based polyesters derived from renewable resources: a review, Int. J. Biol. Macromol., 2016, vol. 82, pp. 1028–1040.

    Article  CAS  PubMed  Google Scholar 

  2. Sapra, S., Stewart, J.A., Mraud, K., and Schupp, R., A Canadian study of the use of poly-L-lactic acid dermal implant for the treatment of hill and valley acne scarring, Dermatol. Surg., 2015, vol. 41, no. 5, pp. 587–594.

    Article  CAS  PubMed  Google Scholar 

  3. Sevost’yanov, M.A., Fedotov, A.Yu., Nasakina, E.O., Teterina, A.Yu., Baikin, A.S., Sergienko, K.V., Kolmakov, A.G., Komlev, V.S., Ivanov, V.E., Karp, O.E., Gudkov, S.V., and Barinov, S.M., Kinetics of the release of antibiotics from chitosan-based biodegradable biopolymer membranes, Dokl. Chem., 2013, vol. 465, no. 1, pp. 278–280.

    Article  CAS  Google Scholar 

  4. Shue, L., Yufeng, Z., and Mony, U., Biomaterials for periodontal regeneration: a review of ceramics and polymers, Biomatter, 2012, vol. 2, no. 4, pp. 271–277.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lai, P., Daear, W., Löbenberg, R., and Prenner, E.J., Overview of the preparation of organic polymeric nanoparticles for drug delivery based on gelatine, chitosan, poly(D,L-lactide-co-glycolic acid) and polyalkylcyanoacrylate, Colloids Surf., B, 2014, vol. 118, pp. 154–163.

    Article  CAS  Google Scholar 

  6. Charyshkin, A.L., Glushchenko, L.V., Chvalun, S.N., and Sedush, N.S., The first results of the study of self-soluble cava filter, Khirurgiya, 2014, no. 10, pp. 21–24.

  7. Glotova, V.N., Novikov, V.T., Izhenbina, T.N., and Titova, N.G., Solubility of lactide and glycolide in organic solvents, Polzunovskii Vestn., 2014, no. 3, pp. 145–147.

  8. Kaihara, S., Matsumura, S., Mikos, A.G., and Fisher, J.P., Synthesis of poly (L-lactide) and polyglycolide by ring-opening polymerization, Nat. Protoc., 2007, vol. 2, pp. 2767–2771.

    Article  CAS  PubMed  Google Scholar 

  9. Timchenko, T.V., Shcherbakova, L.I., and Kompantsev, V.A., Poly(D,L-lactide-co-glycolide): synthesis, properties, and use for development of medical drugs with microcarriers, Sovrem. Probl. Nauki Obraz., 2015, no. 4.

  10. Nasonova, M.V., Khodyrevskaya, Yu.I., Nemoikina, A.L., Mikhailenko, M.Yu., and Kudryavtseva, Yu.A., Optimization of the degradation period and physical-mechanical properties of anti-adhesive membranes based on biodegradable polymers, Vestn. Kemer. Gos. Univ., 2015, vol. 1, no. 2 (62), pp. 65–69.

  11. Sun, Y., Jensen, H., Petersen, N.J., Larsen, S.W., and Ø stergaard, J., Concomitant monitoring of implant formation and drug release of in situ forming poly (lactide-co-glycolide acid) implants in a hydrogel matrix mimicking the subcutis using UV-vis imaging, J. Pharm. Biomed. Anal., 2018, vol. 50, pp. 95–106.

    Article  CAS  Google Scholar 

  12. Zhu, Y., Wang, Z., Zhou, H., Li, L., Zhu, Q., and Zhang, P., An injectable hydroxyapatite/poly(lactide-co-glycolide) composite reinforced by micro/nano-hybrid poly(glycolide) fibers for bone repair, Mater. Sci. Eng., C, 2017, vol. 80, pp. 326–334.

    Article  CAS  Google Scholar 

  13. Vodeneev, V.A., Zvyagin, A.V., Shilyagina, N.Yu., Kulikov, D.A., Kulikov, A.V., and Gudkov, S.V., Targeted radionuclide therapy: current status and prospects, Genes Cells, 2015, vol. 10, no. 10, pp. 23–29.

    Google Scholar 

  14. Margaroni, M., Agallou, M., Athanasiou, E., Kammona, O., Kiparissides, C., Gaitanaki, C., and Karagouni, E., Vaccination with poly(D,L-lactide-co-glycolide) nanoparticles loaded with soluble Leishmania antigens and modified with a TNFα-mimicking peptide or monophosphoryl lipid A confers protection against experimental visceral leishmaniasis, Int. J. Nanomed., 2017, vol. 12, pp. 6169–6184.

    Article  CAS  Google Scholar 

  15. Gudkov, S.V., Popova, N.R., and Bruskov, V.I., Radio-protective substances: history, trends and prospects, Biophysics (Moscow), 2015, vol. 60, no. 4, pp. 659–667.

    Article  CAS  Google Scholar 

  16. Gudkov, S.V., Andreev, S.N., Barmina, E.V., Bunkin, N.F., Kartabaeva, B.B., Nesvat, A.P., Stepanov, E.V., Taranda, N.I., Khramov, R.N., and Glinushkin, A.P., Effect of visible light on biological objects: physiological and pathophysiological aspects, Phys. Wave Phenom., 2017, vol. 25, pp. 207–213.

    Article  Google Scholar 

  17. Garmash, S.A., Smirnova, V.S., Karp, O.E., Usacheva, A.M., Berezhnov, A.V., Ivanov, V.E., Cher-nikov, A.V., Bruskov, V.I., and Gudkov, S.V., Pro-oxidative, genotoxic and cytotoxic properties of uranyl ions, J. Environ. Radioact., 2014, vol. 127, pp. 163–170.

    Article  CAS  PubMed  Google Scholar 

  18. Sevost’yanov, M.A., Nasakina, E.O., Baikin, A.S., Sergienko, K.V., Konushkin, S.V., Kaplan, M.A., Seregin, A.V., Leonov, A.V., Kozlov, V.A., Shkirin, A.V., Bunkin, N.F., Kolmakov, A.G., Simakov S.V., and Gudkov, S.V., Biocompatibility of new materials based on nano-structured nitinol with titanium and tantalum composite surface layers: experimental analysis in vitro and in vivo, J. Mater. Sci.: Mater. Med., 2018, vol. 29, p. 33.

    Google Scholar 

  19. Nasakina, E.O., Baikin, A.S., Sergienko, K.V., Sevostyanov, M.A., Kolmakov, A.G., Goncharenko, B.A., Zabolotnyi, V.T., Solntsev, K.A., Fadeev, R.S., Fadeeva, I.S., and Gudkov, S.V., Biocompatibility of nanostructured nitinol with titanium or tantalum surface composite layers formed by magnetron sputtering, Dokl. Chem., 2015, vol. 461, no. 1, pp. 86–88.

    Article  CAS  Google Scholar 

  20. Sevost’yanov, M.A., Fedotov, A.Yu., Kolmakov, A.G., Zabolotnyi, V.T., Barinov, S.M., Goncharenko, B.A., Komlev, V.S., Baikin, A.S., Sergienko, K.V., Tete-rina, A.Yu., Nasakina, E.O., Leonova, Yu.O., and Leonov, A.V., Mechanical properties of nanostructured nitinol/chitosan composite material, Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 4, pp. 344–346.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation (grant identifier RFMEFI60417X0196).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Baikin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by K. Lazarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baikin, A.S., Sevost’yanov, M.A., Nasakina, E.O. et al. Biocompatibility of Biodegradable Polymer Films Based on Poly(lactic-co-glycolic acid) of Various Molecular Weights. Inorg. Mater. Appl. Res. 10, 887–891 (2019). https://doi.org/10.1134/S207511331904004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207511331904004X

Keywords:

Navigation