Inorganic Materials: Applied Research

, Volume 9, Issue 6, pp 1051–1059 | Cite as

Influence of Hot Plastic Deformation Modes on the Structure and Properties of Quenched Hot Rolled Economically Alloyed High-Strength Steel

  • U. A. PazilovaEmail author
  • E. I. Khlusova
  • T. V. Kniaziuk

Abstract—The peculiarities of the structure formation of low-carbon high-strength economically alloyed steel with guaranteed yield strength of 750 MPa are studied using EBSD analysis after hot plastic deformation an various temperatures simulated on a GLEEBLE 3800 plastometer. A comprehensive approach includes the estimation of the size of hardness austenite grains and their heterogeneity, as well as the construction of size distribution histograms of structural elements and angles of misorientations between them. The relative extent of small-angle boundaries is analyzed as well. The results are confirmed by study of sheet metal of thickness up to 40 mm manufactured under industrial conditions.


high-strength economically alloyed steel guaranteed yield strength of 750 MPa GLEEBLE 3800 plastometer static austenite recrystallization grain size bainitic-martensitic structure structural element size misorientations EBSD analysis 



  1. 1.
    Chernyshov, E.A., Romanov, A.D., and Romanova, E.A., High-strength shipbuilding steels and alloys, Metallurgist, 2016, vol. 60, nos. 1–2, pp. 186–190.CrossRefGoogle Scholar
  2. 2.
    Bandyopadhyay, P.S., Kundu, S., Ghosh, S.K., and Chatterjee, S., Structure and properties of a low-carbon, microalloyed, ultra-high-strength steel, Metall. Mater. Trans. A, 2011, vol. 42, pp. 1051–1061.CrossRefGoogle Scholar
  3. 3.
    Malyshevskii, V.A., Khlusova, E.I., Golosienko, S.A., Khomyakova, N.F., Milyuts, V.G., Pavlova, A.G., Pazilova, U.G., Afanas’ev, S.Yu., Gusev, M.A., and Levagin, E.Yu., RF Patent 2507295, 2014.Google Scholar
  4. 4.
    Olasolo, M., Uranga, P., Rodriguez-Ibabe, J.M., and Lopez, B., Effect of austenite microstructure and cooling rate on transformation characteristics in a low carbon Nb–V microalloyed steel, Mater. Sci. Eng., A, 2011, vol. 528, pp. 2559–2569.CrossRefGoogle Scholar
  5. 5.
    Miaoa, C.L., Shang, C.J., Zhang, G.D., and Subramanian, S.V., Recrystallization and strain accumulation behaviors of high Nb-bearing line pipe steel in plate and strip rolling, Mater. Sci. Eng., A, 2010, vol. 527, pp. 4985–4992.CrossRefGoogle Scholar
  6. 6.
    Korotovskaya, S.V., Orlov, V.V., and Khlusova, E.I., Effect of fractional nature of deformation on ultrafine structure formation in low-carbon low-alloy steels, Metallurgist, 2014, vol. 57, nos. 11–12, pp. 1009–1014.CrossRefGoogle Scholar
  7. 7.
    Perttula, J.S. and Karjalainen, L.P., Recrystallization in austenite measured by double compression and stress relaxation methods, Mater. Sci. Technol., 1998, vol. 14, pp. 626–630.CrossRefGoogle Scholar
  8. 8.
    Takayama, N., Miyamoto, G., and Furuhara, T., Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel, Acta Mater., 2012, vol. 60, pp. 2387–2396.CrossRefGoogle Scholar
  9. 9.
    Zisman, A.A., Soshina, T.V., and Khlusova, E.I., Maps of structure changes in austenite of low carbon steel 09CrNi2MoCuV during hot deformation and their use to improve industrial technologies, Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 6, pp. 570–577.CrossRefGoogle Scholar
  10. 10.
    Zolotorevskii, N.Yu., Zisman, A.A., Panpurin, S.N., Titovets, Yu.F., Golosienko, S.A., and Khlusova, E.I., Effect of the grain size and deformation substructure of austenite on the crystal geometry of bainite and martensite in low-carbon steels, Met. Sci. Heat Treat., 2014, vol. 55, nos. 9–10, pp. 550–558.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • U. A. Pazilova
    • 1
    Email author
  • E. I. Khlusova
    • 1
  • T. V. Kniaziuk
    • 1
  1. 1.National Research Center Kurchatov Institute—CRISM PrometeySt. PetersburgRussia

Personalised recommendations