Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 6, pp 1254–1262 | Cite as

Construction of Theoretical Curves of the Long-Term Strength for Neutron-Irradiated Austenitic Steels Kh18N9 and 08Kh16N11M3

  • A. G. GulenkoEmail author
  • B. Z. Margolin
  • A. A. Buchatskii
  • A. A. Nuzhdov
STRUCTURAL AND TECHNOLOGICAL STRENGTH AND EFFICIENCY OF MATERIALS
  • 1 Downloads

Abstract—Having analyzed experimental data on the long-term strength of unirradiated austenitic materials and predictive dependences obtained in the context of a physical and mechanical model of intergranular fracture, the authors have determined the assurance factor for plotting the long-term strength curves for unirradiated and irradiated materials. The above model, as well as experimental results, has made it possible to calculate the normative curves for the initial and irradiated steels Kh18N9 and 08Kh16N11M3. Their validity has been verified on the basis of external and intrareactor tests.

Keywords:

creep long-term strength and plasticity theoretical curves intrareactor tests 

Notes

REFERENCES

  1. 1.
    PNAE G-7-002–86. Normy rascheta na prochnost’ oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok (PNAE G-7-002–86. Standards for Calculation of the Strength of Equipment and Pipelines of Nuclear Power Plants), Moscow: Energoatomizdat, 1989.Google Scholar
  2. 2.
    Margolin, B.Z., Gulenko, A.G., Kursevich, I.P., and Buchatsky, A.A., Forecasting the long-term strength of austenitic materials under neutron irradiation, Vopr. Materialoved., 2005, no. 2 (42), pp. 163–186.Google Scholar
  3. 3.
    Margolin, B.Z., Gulenko, A.G., Kursevich, I.P., and Buchatskii, A.A., Modeling for fracture in materials under long-term static creep loading and neutron irradiation. Part 1. A physico-mechanical model, Strength Mater., 2006, vol. 38, no. 3, pp. 221–233.CrossRefGoogle Scholar
  4. 4.
    Margolin, B.Z., Gulenko, A.G., Kursevich, I.P., and Buchatskii, A.A., Modeling for fracture in materials under long-term static creep loading and neutron irradiation. Part 2. Prediction of creep rupture strength for austenitic materials, Strength Mater., 2006, vol. 3838, no. 5, pp. 449–457.CrossRefGoogle Scholar
  5. 5.
    Gulenko, A.G., Buchatsky, A.A., Margolin, B.Z., Kashtanov, A.D., and Fedorova, V.A., The growth rate of a crack in austenitic steels during a long static loading under creep conditions, Vopr. Materialoved., 2012, no. 2 (70), pp. 120–137.Google Scholar
  6. 6.
    Kursevich, I.P., Margolin, B.Z., Prokoshev, O.Yu., and Kokhonov, V.I., Mechanical properties of austenitic steels under neutron irradiation: the influence of various factors, Vopr. Materialoved., 2006, no. 4 (48), pp. 55–68.Google Scholar
  7. 7.
    Data Sheets on the Elevated Temperature Properties of 18Cr–8Ni Stainless Steel for Boiler and Heat Exchanger Seamless Tubes (SUS 304H TB)/NRIM Creep Data Sheets No. 4B, Tokyo: Natl. Res. Inst. Met., 1986.Google Scholar
  8. 8.
    Data Sheets on the Elevated Temperature Properties of 18Cr–12Ni–Mo Stainless Steel Tubes for Boiler and Heat Exchangers (SUS 316H TB)/NRIM Creep Data Sheets No. 6B, Tokyo: Natl. Res. Inst. Met., 2000.Google Scholar
  9. 9.
    Code Case N-47-32, Class 1, Components in Elevated Temperature Service, in Cases of Boiler and Pressure Vessel Code, New York: Am. Soc. Mech. Eng., 1976.Google Scholar
  10. 10.
    Stepnov, M.N., Statisticheskaya obrabotka rezul’tatov mekhanicheskikh ispytanii (Statistical Processing of the Results of Mechanical Tests), Moscow: Mashinostroenie, 1972.Google Scholar
  11. 11.
    Margolin, B.Z., Gulenko, A.G., Buchatskii, A.A., Nesterova, E.V., and Kashtanov, A.D., Study of the effect of thermal aging on durability and plasticity of Kh18N9 steel, Inorg. Mater.: Appl. Res., 2011, vol. 2, no. 6, pp. 633–639.CrossRefGoogle Scholar
  12. 12.
    Grishmanovskaya, R.N., Kudryavtsev, A.S., and Markov, V.G., The change in the properties of steels of grades Kh18N9 and Kh16N11M3 after operation for 130 000 hours as part of a industrial a RU BN-600reheater, Trudy 9-oi mezhdunarodnoi konferentsii “Problemy materialovedeniya pri proektirovanii, izgotovlenii i ekspluatatsii oborudovaniya AES,” 6–8 iyunya 2006 g. (Proc. 9th Int. Conf. “Problems Material Science in Design, Production, and Operation of Equipment of NPP,” June 6–8, 2006), St. Petersburg, 2006, vol. 2, pp. 290–298.Google Scholar
  13. 13.
    Votinov, S.N., Gorynin, I.V., Nikolaev, V.A., Prokhorov, V.I., and Razov, I.A., Influence of neutron irradiation on the long-term strength of austenitic stainless steels, Trudy nauchno-tekhnicheskoi konferentsii “Atomnaya energetika, toplivnye tsikly, radiatsionnoe materialovedenie,” Ul’yanovsk, 5–10 oktyabrya 1970 (Proc. Sci.-Tech. Conf. “Nuclear Energetics, Fuel cycles, and Radiation Material Science,” Ulyanovsk, October 5–10, 1970), Moscow: Sov. Ekon. Vzaimopomoshchi, 1971, vol. 3, pp. 612–630.Google Scholar
  14. 14.
    Kursevich, I.P., Lapin, A.N., and Nikolaev, V.A., Radiation damage of structural materials used in reactors of the BN type, in Radiatsionnye effekty izmenenii mekhanicheskikh svoistv konstruktsionnykh materialov i metody ikh issledovanii (Radiation Effects of Change of Mechanical Properties of Constructional Materials and Their Study Methods), Kiev: Naukova Dumka, 1976.Google Scholar
  15. 15.
    Andreev, V.V., Nikolaev, V.A., and Parshin, A.M., Radiation damage of steels during irradiation in a fast reactor, in Radiatsionnye effekty izmenenii mekhanicheskikh svoistv konstruktsionnykh materialov i metody ikh issledovanii (Radiation Effects of Change of Mechanical Properties of Constructional Materials and Their Study Methods), Kiev: Naukova Dumka, 1976.Google Scholar
  16. 16.
    Votinov, S.N., Prokhorov, V.I., and Ostrovskii, Z.E., Obluchennye nerzhaveyushchie stali (Irradiated Stainless Steels), Moscow: Nauka, 1987.Google Scholar
  17. 17.
    Votinov, S.N., Prokhorov, V.I., and Fin’ko, A.G., Changes in the characteristics of heat-resistant pipes from 1Kh18N10T steel at 550–700°C during irradiation, Preprint of the Research Inst. of Atomic Reactors, Dmitrovgrad, 1980, no. NIIAR-39 (447).Google Scholar
  18. 18.
    Votinov, S.N., Losev, N.P., Prokhorov, V.I., Samsonov, B.V., Tsykanov, V.A., and Fin’ko, A.G., Rating the long-term strength of constructional materials inside a reactor, Strength Mater., 1971, vol. 3, no. 5, pp. 558–561.CrossRefGoogle Scholar
  19. 19.
    Votinov, S.N., Prokhorov, V.I., and Fin’ko, A.G., Comparative estimate of the long-term strength of KhN77TYuR alloy and Kh18N10T at 700°C under in-pile irradiation conditions, Strength Mater., 1976, vol. 8, no. 12, pp. 1407–1412.CrossRefGoogle Scholar
  20. 20.
    Kurata, Y., Itabashi, Y., Mimura, H., Kikuchi, T., Amezawa, H., Shimakawa, S., Tsuji, H., and Shindo, M., In-pile and post-irradiation creep of type 304 stainless steel under different neutron spectra, J. Nucl. Mater., 2000, vol. 9, pp. 286–390.Google Scholar
  21. 21.
    Pisarenko, G.S., Pisarenko, G.S., and Kiselevskii, V.N., Prochnost’ i plastichnost’ materialov v radiatsionnykh potokakh (Strength and Plasticity of Materials in Radiation Flows), Kiev: Naukova Dumka, 1979.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. G. Gulenko
    • 1
    Email author
  • B. Z. Margolin
    • 1
  • A. A. Buchatskii
    • 1
  • A. A. Nuzhdov
    • 2
  1. 1.National Research Center Kurchatov Institute—CRISM PrometeySt. PetersburgRussia
  2. 2.JSC SSC RIAR (Research Institute of Atomic Reactors)DimitrovgradRussia

Personalised recommendations