Inorganic Materials: Applied Research

, Volume 9, Issue 6, pp 1060–1069 | Cite as

Structure Formation of the Nitrogen-Containing Austenitic 04Kh20N6G11M2AFB Steel at Hot Deformation: Part I. Influence of Deformation Temperature and Strain Rate on the Process of Dynamic Recrystallization

  • O. V. FominaEmail author
  • T. V. Vikhareva
  • V. V. Sagaradze
  • N. V. Kataeva


This work determines the values of the deformation threshold necessary for the initiation and development of dynamic recrystallization within the investigated deformation temperature and strain rate for high-strength corrosion-resistant nitrogen-containing austenitic 04Kh20N6G11M2AFB steel. Analysis of diagrams shows that the deformation resistance increases with the decrease in the deformation temperature. A faint peak is observed at 1000–1200°C; it indicates the start of dynamic recrystallization. The structure of high-strength corrosion-resistant nitrogen-containing austenitic 04Kh20N6G11M2AFB steel after hot deformation with the strain rate of 0.1, 1.0, and 10 s–1 within the temperature range of 900–1200°С is studied by the EBSD analysis and transmission electron microscopy.


nitrogen-containing austenitic steel EBSD analysis structure dynamic recrystallization hot deformation strain rate deformation resistance 



Electron microscope investigations were performed at the Center for Collective Use of the Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences (“Structure,” no. АААА-А18-118020190116-6).

Experimental studies were performed by using the equipment of the Center for Collective Use Composition, Structure, and Properties of Structural and Functional Materials of the National Research Center Kurchatov Institute—CRISM Prometey under the financial support of the Ministry of Education within the framework of agreement 14.595.21.0004, unique identifier RFMEFI59517X0004.


  1. 1.
    Malyshevsky, V.A., Tsukanov, V.V., Kalinin, G.Yu., and Grachev, G.V., Modern low-magnetic steels for shipbuilding, Sudostroenie, 2009, no. 3, pp. 66–68.Google Scholar
  2. 2.
    Kalinin, G.Yu., Khar’kov, A.A., Fomina, O.V., and Golub, Yu.V., Possible wide implementation of austenitic steels doped with nitrogen, Morsk. Vestn., 2010, no. 4 (36), pp. 82–83.Google Scholar
  3. 3.
    Potak, Ya.M., Vysokoprochnye stali (High-Strength Steels), Moscow: Metallurgiya, 1972.Google Scholar
  4. 4.
    Sagaradze, V.V. and Uvarov, A.I., Uprochnenie i svoistva austenitnykh stalei (Strengthening and Properties of Austenitic Steels), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 2013.Google Scholar
  5. 5.
    Kostina, M.V., Bannykh, O.A., Blinov, V.M., and Dymov, A.A., New chromium corrosion-resistant steels doped by nitrogen, Materialovedenie, 2001, no. 4 (7), pp. 35–44.Google Scholar
  6. 6.
    Gavriljuk, V.B., Nitrogen in iron and steel, ISIJ Int., 1996, vol. 36, no. 7, pp. 738–745.CrossRefGoogle Scholar
  7. 7.
    Gorynin, I.V., Rybin, V.V., Malyshevsky, V.A., Kalinin, G.Yu., Mushnikova, S.Yu., Malakhov, N.V., and Yampol’skii, V.D., Creation of prospective fundamentally new corrosion-resistant cored steels doped with nitrogen, Vopr. Materialoved., 2005, no. 2 (42), pp. 40–54.Google Scholar
  8. 8.
    Kostina, M.V., Bannykh, O.A., and Blinov, V.M., Special features of steels alloyed with nitrogen, Met. Sci. Heat Treat., 2000, vol. 42, nos. 11–12, pp. 459–462.CrossRefGoogle Scholar
  9. 9.
    Bannykh, O.A., Blinov, V.M., Kostina, M.V., and Blinov, E.V., Nickel saving in a 0Kh17N12M2-type (AISI 316) steel due to nitrogen alloying, Russ. Metall. (Engl. Transl.), 2006, vol. 2006, no. 5, pp. 372–378.Google Scholar
  10. 10.
    Gavrilyuk, V.G. and Berns, H., High-strength austenitic stainless steel, Met. Sci. Heat Treat., 2007, vol. 49, nos. 11–12, pp. 566–568.CrossRefGoogle Scholar
  11. 11.
    Mushnikova, S.Yu., Kostin, S.K., Sagaradze, V.V., and Kataeva, N.V., Structure, properties, and resistance to stress-corrosion cracking of a nitrogen-containing austenitic steel strengthened by thermomechanical treatment, Phys. Met. Metall., 2017, vol. 118, no. 11, pp. 1155–1166.CrossRefGoogle Scholar
  12. 12.
    Kodjaspirov, G.E., Sulyagin, R.V., and Karjalainen, L.P., Effect of temperature and deformation conditions on hardening and softening of nitrogen-bearing corrosion-resistant steels, Met. Sci. Heat Treat., 2005, vol. 47, nos. 11–12, pp. 502–506.CrossRefGoogle Scholar
  13. 13.
    Kostina, M.V., Bannykh, O.A., Blinov, V.M., and Dymov, A.A., New chromium corrosion-resistant steels doped by nitrogen, Materialovedenie, 2001, no. 4 (7), pp. 35–44.Google Scholar
  14. 14.
    Bannykh, O.A., Blinov, V.M., and Kostina, M.V., The evolution of the structure of a nitrogenous corrosion-resistant austenitic steel 06Kh21AG10N7MFB under thermal deformation and thermal action, Vopr. Materialoved., 2006, no. 1 (45), pp. 9–22.Google Scholar
  15. 15.
    Blinov, V.M., Poimenov, I.L., et al., Effect of hot deformation on the structure and mechanical properties of high-nitrogen non-magnetic steels, in Struktura i fiziko-mekhanicheskie svoistva nemagnitnykh stalei (The Structure and Physical-Mechanical Properties of Non-Magnetic Steels), Moscow: Nauka, 1986, pp. 30–33.Google Scholar
  16. 16.
    Gorynin, I.V., Rybin, V.V., Malyshevsky, V.A., Kalinin, G.Yu., Malakhov, N.V., Mushnikova, S.Yu., and Yampol’skii, V.D., Creation of advanced fundamentally new corrosion-resistant corpus steels doped with nitrogen, Vopr. Materialoved., 2005, no. 2 (42), pp. 40–54.Google Scholar
  17. 17.
    Sagaradze, V.V., Uvarov, A.I., Pecherkina, N.L., Kalinin, G.Yu., and Mushnikova, S.Yu., Effect of strengthening treatment on the structure and mechanical properties of hardened nitrogen-bearing austenitic steel 04Kh20N6G11AM2BF, Met. Sci. Heat Treat., 2008, vol. 50, nos. 9–10, pp. 489–494.CrossRefGoogle Scholar
  18. 18.
    Gorynin, I.V., Malyshevsky, V.A., Kalinin, G.Yu., Mushnikova, S.Yu., Bannykh, O.A., Blinov, V.M., and Kostina, M.V., Corrosion-resistant high-strength nitrogenous steels, Vopr. Materialoved., 2009, no. 3 (59), pp. 7–16.Google Scholar
  19. 19.
    Mushnikova, S.Yu., Sagaradze, V.V., Filippov, Yu.I., Kataeva, N.V., Zavalishin, V.A., Malyshevsky, V.A., Kalinin, G.Yu., and Kostin, S.K., Comparative analysis of corrosion cracking of austenitic steels with different contents of nitrogen in chloride- and hydrogen-containing media, Phys. Met. Metall., 2015, vol. 116, no. 6, pp. 626–635.CrossRefGoogle Scholar
  20. 20.
    Kodzhaspirov, G.E., Rudskoi, A.I., and Rybin, V.V., Fizicheskie osnovy i resursosberegayushchie tekhnologii izgotovleniya izdelii plasticheskim deformiravaniem (Physical Principles and Resource-Saving Technologies of Plastic Deformation), St. Petersburg: Nauka, 2006.Google Scholar
  21. 21.
    Bernshtein, M.L., Struktura deformirovannykh metallov (The Structure of Deformed Metals), Moscow: Metallurgiya, 1977.Google Scholar
  22. 22.
    Gorelik, S.S., Dobatkin, S.V., and Kaputkina, L.M., Rekristallizatsiya metallov i splavov (Recrystallization of Metals and Alloys), Moscow: Mosk. Inst. Stali Splavov, 2005.Google Scholar
  23. 23.
    Recrystallization of Metallic Materials, Haeßner, F., Ed., Stuttgart: Dr. Riederer Verlag, 1978.Google Scholar
  24. 24.
    Humphreys, F.J. and Hatherly, M., Recrystallization and Related Annealing Phenomena, Amsterdam: Elsevier, 2004.Google Scholar
  25. 25.
    Doherty, R.D., Hughes, D.A., Humphreys, F.J., Jonas, J.J., et al., Current issues in recrystallization: a review, Mater. Sci. Eng., A, 1997, vol. 238, pp. 219–274.CrossRefGoogle Scholar
  26. 26.
    Kondrat’ev, N.S. and Trusov, P.V., Mechanisms of formation of recrystallization nuclei in metals under thermomechanical treatment, Vestn. Permsk. Nats. Issled. Politekh. Univ., Mekh., 2016, no. 4, pp. 151–174.Google Scholar
  27. 27.
    Evangelista, E., McQueen, H.J., and Ryan, N.D., Hot strength, dynamic recovery and dynamic recrystallization of 317 type stainless steel, Metall. Sci. Technol., 1987, vol. 5, no. 2, pp. 50–58.Google Scholar
  28. 28.
    Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H., and Jonas, J.J., Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci., 2014, vol. 60, pp. 130–207.CrossRefGoogle Scholar
  29. 29.
    Bernshtein, M.L., Zaimovskii, V.A., and Kaputkina, L.M., Termomekhanicheskaya obrabotka stali (Thermomechanical Treatment of Steel), Moscow: Metallurgiya, 1983.Google Scholar
  30. 30.
    Ponge, D. and Gottstein, G., Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior, Acta Mater., 1998, vol. 46, no. 1, pp. 69–80.CrossRefGoogle Scholar
  31. 31.
    Dehghan-Manshadi, A., Barnett, M.R., and Hodgson, P.D., Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation, Mater. Sci. Eng., A, 2008, vol. 485, pp. 664–672.CrossRefGoogle Scholar
  32. 32.
    Dehghan-Manshadi, A., Barnett, M.R., and Hodgson, P.D., Hot deformation and recrystallization of austenitic stainless steel: Part I. Dynamic recrystallization, Metall. Mater. Trans. A, 2008, vol. 39, pp. 1359–1370.CrossRefGoogle Scholar
  33. 33.
    Poirier, J.-P., Plasticité à Haute Température des Solides Cristallins, Paris: Eyrolles, 1976.Google Scholar
  34. 34.
    Hoseini Asli, A. and Zarei-Hanzaki, A. Dynamic recrystallization behavior of a Fe–Cr–Ni super-austenitic stainless steel, J. Mater. Sci. Technol., 2009, vol. 25, no. 5, pp. 603–606.Google Scholar
  35. 35.
    Rybin, V.V., Bol’shie plasticheskie deformatsii i razru-shenie metallov (Large Plastic Deformations and Fracture of Metals), Moscow: Metallurgiya, 1986.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. V. Fomina
    • 1
    Email author
  • T. V. Vikhareva
    • 1
  • V. V. Sagaradze
    • 2
  • N. V. Kataeva
    • 2
  1. 1.National Research Center Kurchatov Institute—Central Research Institute of Structural Materials PrometeySt. PetersburgRussia
  2. 2.Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations