Inorganic Materials: Applied Research

, Volume 9, Issue 6, pp 1148–1154 | Cite as

Improvement of the Service Properties of the Weld Joint Metal for Transport Nuclear Power Units Manufactured of Heat-Resistant Steel Grades: Part II. A Study of Mechanical Properties of Low-Carbon Weld Deposits Depending on the Welding Process Variables

  • M. N. TimofeevEmail author
  • S. N. Galiatkin
  • E. I. Mikhaleva
  • O. V. Shubin


The effect of the welding conditions, the temperature and duration of process tempering, and welding flux types on the strength properties of the all-weld metal as applied to low-carbon weld deposits of transport nuclear power units has been investigated.


transport nuclear power units  low-carbon weld deposits welding process variables all-weld metal deposit mechanical properties 



  1. 1.
    Konishchev, B.P., Kurlanov, S.A., Potapov, N.N., et al., Svarochnye materialy dlya dugovoi svarki. Spravochnoe posobie. Tom 1. Zashchitnye gazy i svarochnye flyusy (Welding Materials for Arc Welding: Handbook, Vol. 1: Protective Gases and Welding Fluxes), Potapov, N.N., Ed., Moscow: Mashinostroenie, 1989.Google Scholar
  2. 2.
    Larson, F.R. and Miller, J., A time-temperature relationship for rupture and creep stresses, Trans. ASME, 1952, vol. 5, pp. 765–775.Google Scholar
  3. 3.
    Tekhnologiya elektricheskoi svarki metallov i splavov plavleniem (Electric Welding of Metals and Alloys by Melting), Paton, B.E., Ed., Moscow: Mashinostroenie, 1974.Google Scholar
  4. 4.
    Evans, G.M., The effect of silicon on the microstructure and properties of C–Mn all-weld metal deposits, Metal Constr., 1986, vol. 18, no. 7, pp. 438–444.Google Scholar
  5. 5.
    Sarrak, V.I., Nature of brittleness of structural steels, Met. Sci. Heat Treat., 1977, vol. 19, no. 7, pp. 620–623.CrossRefGoogle Scholar
  6. 6.
    Podgaetskii, V.V., Effect of chemical composition of welded metal on its microstructure and mechanical properties, Avtom. Svarka, 1991, no. 2, pp. 1–9.Google Scholar
  7. 7.
    Timofeev, M.N., Galiatkin, S.N., and Mikhaleva, E.I., Properties of metal in a weld obtained using agglomerated flux in the welding of cases for water-cooled nuclear reactors, Vopr. Materialoved., 2014, no. 4 (80), pp. 148–155.Google Scholar
  8. 8.
    Timofeev, M.N., Galiatkin, S.N., Shekin, S.I., and Mikhaleva, E.I., New agglomerated flux for automated welding of low alloyed thermoresistant steels, Svarka Diagn., 2017, no. 2, pp. 44–48.Google Scholar
  9. 9.
    Kasatkin, O.G. and Mikhodui, L.I., Choice of alloying system for welding of highly refractory steels, Avtom. Svarka, 1992, no. 5, pp. 19–25.Google Scholar
  10. 10.
    Evans, G.M., The effect of titanium in SMA C–Mn steel multipass deposits, Weld. J., 1992, vol. 72, no. 12, pp. 447–454.Google Scholar
  11. 11.
    Tokuhisa, M., Hirai, Y., Nishiyama, N., Yamashita, I., Nisho, K., and Nakatsuji, K., Development of high-quality narrow gap submerged arc welding consumables for Cr–Mo steel, in Kawasaki Steel Technical Report No. 15, Tokyo: JFE Steel, 1986, pp. 74–83.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. N. Timofeev
    • 1
    Email author
  • S. N. Galiatkin
    • 1
  • E. I. Mikhaleva
    • 1
  • O. V. Shubin
    • 2
  1. 1.National Research Center Kurchatov Institute—Central Research Institute of Structural Materials PrometeySt. PetersburgRussia
  2. 2.AO VMZ “Krasny OktyabrVolgogradRussia

Personalised recommendations