Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 6, pp 1142–1147 | Cite as

Improvement of the Service Properties of the Weld Joint Metal for Transport Nuclear Power Units Manufactured of Heat-Resistant Steel Grades: Part I. Technology of Welding Heat-Resistant Steel Grades Using Low-Carbon Welding Materials without Heat Treatment and Experience of Applying Welding Materials

  • M. N. TimofeevEmail author
  • G. P. Karzov
  • S. N. Galiatkin
  • E. I. Mikhaleva
  • S. G. Litvinov
  • A. G. Aleksandrin
  • D. L. Bashulin
  • O. V. Shubin
WELDING AND ALLIED PROCESSES. WELDING CONSUMABLES AND TECHNOLOGIES

Abstract

The paper describes a technology for welding the assembly joints in power plants of nuclear icebreakers manufactured of heat-resistant 15Cr2MoV steel grades using low-carbon surfacing. The proposed technology is a reliable method for assuring the serviceability of icebreaker nuclear power plants under conditions when the heat treatment of the assembly joint is infeasible. The low-carbon all-weld metal is often prone to softening under the action of repeated process tempering cycles to which the assembly units of the equipment are subjected.

Keywords:

icebreaker nuclear power units assembly joints  low-carbon all-weld metal deposits 

Notes

REFERENCES

  1. 1.
    Makarov, E.L. and Yakushin, B.F., Teoriya svarivaemosti stalei i splavov (Theory of Weldability of Steels and Alloys), Makarov, E.L., Ed., Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2014.Google Scholar
  2. 2.
    Andreev, S.B., Golovchenko, V.S., Gorbach, V.D., and Russo, V.L., Osnovy svarki sudovykh konstruktsii. Uchebnik (Fundamentals of Welding of Ship Constructions: Manual), Russo, V.L., Ed., St. Petersburg: Sudostroenie, 2006.Google Scholar
  3. 3.
    PNAEG-7-010–89. Oborudovanie i truboprovody atomnykh energeticheskikh ustanovok. Svarka i naplavka. Osnovnye polozheniya. Svarnye soedineniya i naplavki. Pravila kontrolya (PNAEG-7-010–89. Equipment and Pipelines of Nuclear Power Plants. Welding and Deposition. General Statements. Welded Joints and Depositions. Control Rules), Moscow: Energoatomizdat, 1991.Google Scholar
  4. 4.
    Dupont, J.N. and Kusko, C.S., Technical note: martensite formation in austenitic/ferritic dissimilar alloy welds, Weld. J., 2007, vol. 86. P. 51–54.Google Scholar
  5. 5.
    Zemzin, V.N., Svarnye soedineniya raznorodnykh stalei (Welded Joints of Heterogenic Steels), Moscow: Mashinostroenie, 1966.Google Scholar
  6. 6.
    Rowe, M.D., Nelson, T.W., and Lippold, J.C., Hydrogen-induced cracking along the fusion boundary of dissimilar metal welds, Weld. J., 1999, vol. 78, no. 2, pp. 31–37.Google Scholar
  7. 7.
    Gupta, K., Structural integrity of bimetallic welds at elevated temperature, Int. J. Mech. Eng. Technol., 2012, vol. 3, no. 1, pp. 235–243.Google Scholar
  8. 8.
    Gittos, M.F. and Gooch, T.G., The interface below stainless steel and nickel-alloy claddings, Weld. J., 1992, vol. 71, pp. 461–472.Google Scholar
  9. 9.
    KLM Technology Group Project Engineering Standard “Pressure Vessel Welding Requirements. Project Standards and Specifications,” Johor Bahru: KLM Technol. Group, 2013.Google Scholar
  10. 10.
    Hänninen, H., et al., Dissimilar Metal Weld Joints and Their Performance in Nuclear Power Plant and Oil Refinery Conditions, VTT Research Notes No. 2347, Helsinki: VTT Technical Research Centre of Finland, 2006.Google Scholar
  11. 11.
    King, J.F., Sullivan, M.D., and Slaughter, G.M., Development of an improved stainless steel to ferritic steel transition joint, Weld. J., 1997, vol. 56, no. 2, pp. 354–358.Google Scholar
  12. 12.
    Konishchev, B.P., Kurlanov, S.A., Potapov, N.N., et al., Svarochnye materialy dlya dugovoi svarki. Spravochnoe posobie. Tom 1. Zashchitnye gazy i svarochnye flyusy (Welding Materials for Arc Welding: Handbook, Vol. 1: Protective Gases and Welding Fluxes), Potapov, N.N., Ed., Moscow: Mashinostroenie, 1989.Google Scholar
  13. 13.
    PNAEG-7-002–86. Normy rascheta na prochnost’ oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok (PNAEG-7-002–86. Standard Calculations for Reliability of Equipment and Pipelines of Nuclear Power Plants), Moscow: Energoatomizdat, 1989.Google Scholar
  14. 14.
    Gorynin, I.V., Karzov, G.P., Timofeev, B.T., and Galiatkin, S.N., Welding materials and technologies to improve the safety of NPP operation with WWER reactors, Avtom. Svarka, 2006, no. 8, pp. 1–6.Google Scholar
  15. 15.
    Denisenko, A.V., Grabin, V.F., Korsun, A.O., et al., The structure of low alloyed metal of a weld and their influence of properties of welded joints, Avtom. Svarka, 1990, no. 10 (451), pp. 32–37.Google Scholar
  16. 16.
    Evans, G.M., The effects of sulphur and phosphorus on the microstructure and properties of C–Mn all-weld metal deposits, Met. Constr., 1986, vol. 18, no. 9, pp. 631–636.Google Scholar
  17. 17.
    Kashka, M.M., Smirnov, A.A., Golovinskii, S.A., et al., Prospective development of icebreaking fleet, Arkt.: Ekol. Ekon., 2016, no. 3 (32), pp. 98–107.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. N. Timofeev
    • 1
    Email author
  • G. P. Karzov
    • 1
  • S. N. Galiatkin
    • 1
  • E. I. Mikhaleva
    • 1
  • S. G. Litvinov
    • 1
  • A. G. Aleksandrin
    • 2
  • D. L. Bashulin
    • 2
  • O. V. Shubin
    • 3
  1. 1.National Research Center Kurchatov Institute—Central Research Institute of Structural Materials PrometeySt. PetersburgRussia
  2. 2.AO Afrikantov Experimental Design Bureau for Mechanical Engineering (OKBM-Afrikantov)Nizhny NovgorodRussia
  3. 3.AO VMZ Krasny OktyabrVolgogradRussia

Personalised recommendations