Inorganic Materials: Applied Research

, Volume 9, Issue 6, pp 1188–1197 | Cite as

Synergistic Mechanism of Radiation Embrittlement of Austenitic Stainless Steels under Long-Term High-Temperature Irradiation

  • V. A. ShvetsovaEmail author
  • O. Yu. Prokoshev
  • B. Z. Margolin
  • A. A. Sorokin
  • V. A. Potapova

Abstract—The results of studying the mechanisms of fracture and embrittlement of the Kh18N9 and Kh18N10T austenitic steels under long-term neutron irradiation at elevated temperatures are given. The effects of the temperature and time of irradiation and the neutron radiation dose on the fracture strain and fracture mechanisms are analyzed. On the basis of the results obtained and specially performed experiments, a synergistic mechanism of embrittlement of the material under conditions of long-term high-temperature irradiation is proposed and substantiated, which is determined by the following two factors: thermal aging and helium diffusion. The thermal aging leads to the formation of various phases at grain boundaries and, hence, to a decrease in the grain boundary strength. Helium diffusion at elevated temperatures gives rise to the accumulation and growth of helium bubbles at weakened grain boundaries.


austenitic steel high-temperature neutron irradiation fracture strain synergistic mechanism of fracture radiation embrittlement 



  1. 1.
    Barnes, R.S., Embrittlement of stainless steels nickel based alloys at high temperature induced by neutron radiation, Nature, 1965, vol. 206, p. 1307.CrossRefGoogle Scholar
  2. 2.
    Ward, A.L. and Holmes, J.J., Ductility loss in fast reactor irradiated stainless steel, Nucl. Appl. Technol., 1970, vol. 9, pp. 771–772.CrossRefGoogle Scholar
  3. 3.
    Claudson, T.T. and Barker, R.W., The effects of fast flux irradiation on the mechanical properties and dimensional stability of stainless steel, Nucl. Appl. Technol., 1970, vol. 9, pp. 10–23.CrossRefGoogle Scholar
  4. 4.
    Votinov, S.N., Prokhorov, V.I., Balashov, V.D., et al., The role of irradiation in the high-temperature embrittlement of steel, in Radiatsionnaya fizika tverdogo tela i reaktornoe materialovedenie (Radiation Physics of Solids and Reactor Material Science), Moscow: Atomizdat, 1970, pp. 82–84.Google Scholar
  5. 5.
    Fish, R.L. and Hunter, C.W., STP611: Tensile Properties of Fast Reactor Irradiated Type 304 Stainless Steel, West Conshohocken, Pa: ASTM Int., 1976, pp. 119–138.Google Scholar
  6. 6.
    Zelenskii, V.F., Kiryukhin, N.M., Neklyudov, I.M., et al., Vysokotemperaturnoe radiatsionnoe okhrupchivanie materialov. Analiticheskii obzor (High-Temperature Radiation Brittleness of Materials: Analytical Review), Kharkov: Khar’k. Fiz.-Tekh. Inst., 1983.Google Scholar
  7. 7.
    Votinov, S.N., Prokhorov, V.I., and Ostrovskii, Z.E., Obluchennye nerzhaveyushchie stali (Irradiated Stainless Steels), Moscow: Nauka, 1987.Google Scholar
  8. 8.
    Tavassoli, A.A., Picker, C., and Wareign, J., Data Collection on the Effect of Irradiation on the Mechanical Properties of Austenitic Stainless Steels and Weld Metals, West Conshohocken, PA: ASTM Int., 1997, pp. 995–1010.Google Scholar
  9. 9.
    Voevodin, V.N. and Neklyudov, I.M., Evolyutsiya strukturno-fazovogo sostoyaniya i radiatsionnaya stoikost’ konstruktsionnykh materialov (Evolution of Structural-Phase State and Radiation Resistance of Construction Materials), Kyiv: Naukova Dumka, 2006.Google Scholar
  10. 10.
    Hugon, M., Update on EURATOM R&D activities in nuclear fission and radiation protection, PERFORM60 Final Workshop, Les Renardieres, December 10–12, 2013, Brussels, 2013.Google Scholar
  11. 11.
    Kursevich, I.P., Margolin, B.Z., Prokoshev, O.Yu., Smirnov, V.I., Fedorova, V.A., Nesterova, E.V., and Petrov, S.N., Effect of long-term operational aging on the mechanical properties and microstructure of austenitic 18Cr-9Ni steel and the weld metal, Inorg. Mater.: Appl. Res., 2013, vol. 4, no. 6, pp. 562–574.CrossRefGoogle Scholar
  12. 12.
    Margolin, B.Z., Gulenko, A.G., Buchatskii, A.A., Nesterova, E.V., and Kashtanov, A.D., Study of the effect of thermal aging on durability and plasticity of Kh18N9 steel, Inorg. Mater.: Appl. Res., 2011, vol. 2, no. 6, pp. 633–639.CrossRefGoogle Scholar
  13. 13.
    Fedorova, V.A., Margolin, B.Z., Kashtanov, A.D., and Pozdnyakov, M.L., Effect of thermal aging on growth rate of fatigue crack in 10Cr18Ni9 steel and metal of welding joint, Vopr. Materialoved., 2012, no. 3 (71), pp. 126–135.Google Scholar
  14. 14.
    Neustroev, V.S., Belozerov, S.V., Bulanova, T.M., Varivtsev, A.V., Zhemkov, I.Yu., Karsakov, A.A., Makarov, E.I., Obukhov, A.V., and Slezko, V.S., Analysis of the bar of the actuator of the emergency control AR2 rod after operation in the BOR-60 reactor for about 32 years at high temperatures, Materialy X Rossiiskaya konferentsiya po reaktornomu materialovedeniyu (Proc. X Russ. Conf. on Reactor Material Science), Dmitrovgrad: Nauchno-Issled. Inst. At. Reakt., 2013, pp. 647–664.Google Scholar
  15. 15.
    Kursevich, I.P., Prokoshev, O.Yu., and Potapova, V.A., Operational damage of metal of intracase equipment of BN-600 reactor, in Radiatsionnoe materialovedenie i konstruktsionnaya prochnost’ reaktornykh materialov (Radiation Material Science and Constructional Strength of Reactor Materials), Gorynin, I.V., Ed., St. Petersburg: Tsentr. Nauchno-Issled. Inst. Kompoz. Mater. Prometei, 2002, pp. 212–221.Google Scholar
  16. 16.
    McClintock, P.A. and Argon, A.S., Mechanical Behavior of Materials, Reading, Ma: Addison-Wesley, 1966.Google Scholar
  17. 17.
    Karzov, G.P., Margolin, B.Z., and Shvetsova, V.A., Fiziko-mekhanicheskoe modelirovanie protsessov razrusheniya (Physical-Mechanical Modeling of Destruction Processes), St. Petersburg: Politekhnika, 1993.Google Scholar
  18. 18.
    Engel, L. and Klingele, H., An Atlas of Metal Damage: Surface Examination by Scanning Electron Microscope, St. Louis: Mosby, 1981.Google Scholar
  19. 19.
    Mulford, R.A., Grain-boundary embrittlement of Ni and Ni alloys, in Treatise on Materials Science and Technology, Briant, C.L. and Banerji, S.K., Eds., Amsterdam: Elsevier, 1983, vol. 25, pp. 1–19.Google Scholar
  20. 20.
    Zaluzhnyi, A.G., Sokurskii, Yu.N., and Tebus, V.N., Gelii v reaktornykh materialakh (Helium in Reactor Materials), Moscow: Energoatomizdat, 1988.Google Scholar
  21. 21.
    Neklyudov, I.M., Morozov, A.N., Zhurba, V.I., Ku-lish, V.G., and Galitskii, A.G., Capture of hydrogen isotopes in Cr18Ni10Ti steel implanted by helium ions, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 2008, no. 2, pp. 41–46.Google Scholar
  22. 22.
    Denisov, E.A., Kurdyumov, A.A., Kompaniets, T.N., et al., Hydrogen and radiogenic helium in 12Cr18Ni10Ti steel, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., 2008, no. 2, pp. 56–66.Google Scholar
  23. 23.
    Holmes, J.J., Robbins, R.E., and Brimhall, J.L., Effect of fast reactor irradiation on the tensile properties of 304 stainless steel, J. Nucl. Mater., 1969, vol. 32, pp. 330–339.CrossRefGoogle Scholar
  24. 24.
    Horak, J.A., Sikka, V.K., and Raske, D.T., Review of effects of long-term aging on the mechanical properties and microstructures of types 304 and 316 stainless steel, Proc. Int. Conf. on Nuclear Power Plant Aging, Availability Factor, and Reliability Analysis, San Diego, 1985, pp. 301–313.Google Scholar
  25. 25.
    Gusev, M.N., Maksimkin, O.P., and Garner, F.A., Peculiarities of plastic flow involving “deformation waves” observed during low-temperature tensile tests of highly irradiated 12Cr18Ni10Ti and 08Cr16Ni11Mo3 steels, J. Nucl. Mater., 2010, vol. 403, pp. 121–125.CrossRefGoogle Scholar
  26. 26.
    Gusev, M.N., Field, K.G., and Busby, J.T., Strain-induced phase transformation at the surface of an AISI-304 stainless steel irradiated to 4.4 dpa and deformed to 0.8% strain, J. Nucl. Mater., 2014, vol. 446, pp. 187–192.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Shvetsova
    • 1
    Email author
  • O. Yu. Prokoshev
    • 1
  • B. Z. Margolin
    • 1
  • A. A. Sorokin
    • 1
  • V. A. Potapova
    • 1
  1. 1.National Research Center Kurchatov Institute—Central Research Institute of Structural Materials PrometeySt. PetersburgRussia

Personalised recommendations