Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 6, pp 1243–1253 | Cite as

Mathematical Modeling of Stress–Strain State in Titanium Alloys Considering the Microstructure and Crystal Orientation Measured by EBSD

  • A. Yu. MusienkoEmail author
  • V. P. Leonov
  • I. R. Kozlova
  • S. N. Petrov
SIMULATION OF MATERIALS AND TECHNOLOGICAL PROCESSES

Abstract—The virtual structures of titanium alloy fragments are created via EBSD using microstructural research and local crystal orientations. The uniaxial strains are calculated through a finite element method taking crystallographic characteristics, anisotropic elastic moduli, and crystallographic sliding into account. The mapping of the Schmid factor is carried out for structural fragments. The influence of measured orientations on the intensity of theoretical stress and strains in the loaded elements of polycrystalline material is studied as well.

Keywords:

titanium alloys crystal plasticity EBSD-analysis finite element method microstructural analysis 

Notes

REFERENCES

  1. 1.
    Il’in, A.A., Kolachev, B.A., and Pol’kin, I.S., Titanovye splavy. Sostav, struktura, svoistva (Titanium Alloys: Composition, Structure, and Properties), Moscow: Vseross. Inst. Legk. Splavov, Mosk. Aviats. Tekhnol. Inst., 2009.Google Scholar
  2. 2.
    Titanovye splavy. Metallografiya titanovykh splavov (Titanium Alloys. Metallography of Titanium Alloys), Glazunov, S.G. and Kolachev, B.A., Eds., Moscow: Metallurgiya, 1980.Google Scholar
  3. 3.
    Polufabrikaty iz titanovykh splavov (Semiproducts from Titanium Alloys), Anoshkin, N.F., Ed., Moscow: Metallurgiya, 1996.Google Scholar
  4. 4.
    Mironov, S.Yu., Danilenko, V.N., Myshlyaev, M.M., and Korneva, A.V., Analysis of the spatial orientation distribution of building blocks in polycrystals as determined using transmission electron microscopy and a backscattered electron beam in a scanning electron microscope, Phys. Solid State, 2005, vol. 47, no. 7, pp. 1258–1266.CrossRefGoogle Scholar
  5. 5.
    Electron Backscatter Diffraction in Materials Science, Schwartz, A.J., Kumar, M., Adams, B.L., and Field, D.P., Eds., New York: Springer-Verlag, 2014.Google Scholar
  6. 6.
    Danilenko, V.N., Mironov, S.Yu., Belyakov, A.N., and Zhilyaev, A.P., Use of EBSD analysis in physical material science, Zavod. Lab., Diagn. Mater., 2012, vol. 78, no. 2, pp. 28–46.Google Scholar
  7. 7.
    Computational Methods for Microstructure-Property Relationships, Ghosh, S. and Dimiduk, D., Eds., New York: Springer-Verlag, 2011.Google Scholar
  8. 8.
    Sha, W. and Malinov, S., Titanium Alloys: Modeling of Microstructure, Properties and Applications, Boca Raton: CRC Press, 2003.Google Scholar
  9. 9.
    Verkhoturov, A.D., Mokritskii, B.Ya., and Pustovalov, D.A., A method as the basis for new paradigm of material science, Nov. Materialoved. Nauka Tekh., 2015, no. 1, pp. 1–14.Google Scholar
  10. 10.
    Fisher, E.S. and Renken, C.J., Single-crystal elastic moduli and the hcp → bcc transformation in Ti, Zr, and Hf, Phys. Rev., 1964, vol. 135, no. 2, pp. 482–494.CrossRefGoogle Scholar
  11. 11.
    Jun, T.-S., Sernicola, G., Fionn, P.E., Dunne, T., and Britton, B., Local deformation mechanisms of two-phase Ti-alloy, Mater. Sci. Eng., A, 2016, vol. 649, pp. 39–47.CrossRefGoogle Scholar
  12. 12.
    Roters, F., et al., Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications, Acta Mater., 2010, vol. 58, pp. 1152–1211.CrossRefGoogle Scholar
  13. 13.
    Cailletaud, G.A., Micromechanical approach to inelastic behavior of metals, Int. J. Plast., 1991, vol. 8, pp. 55–73.CrossRefGoogle Scholar
  14. 14.
    Collings, E.W., The Physical Metallurgy of Titanium Alloys, Metals Park, Oh: Am. Soc. Met., 1984.Google Scholar
  15. 15.
    Tomé, C. and Kocks, U.F., The yield surface of h.c.p. crystals, Acta Metall., 1985, vol. 33, no. 4, pp. 603–621.CrossRefGoogle Scholar
  16. 16.
    Schmid, E. and Boas, W., Plasticity of Crystals with Special Reference to Metals, London: Chapman and Hall, 1968.Google Scholar
  17. 17.
    Chechulin, B.B. and Khsein, Yu.D., Tsiklicheskaya i korrozionnaya prochnost’ titanovykh splavov (Cyclic and Corrosion Strength of Titanium Alloys), Moscow: Metallurgiya, 1987.Google Scholar
  18. 18.
    Zwicker, U., Titan und Titanlegierungen, Berlin: Springer-Verlag, 1974.CrossRefGoogle Scholar
  19. 19.
    Kolachev, B.A., Livanov, V.A., and Bukhanova, A.A., Mekhanicheskie svoistva titana i ego splavov (Mechanical Properties of Titanium and Its Alloys), Moscow: Metallurgiya, 1974.Google Scholar
  20. 20.
    Musienko, A.Yu., Leonov, V.P., Kozlova, I.R., and Panotskii, D.A., Computer simulation of the real structure of titanium alloys in the analysis of deformation and fracture processes. Part 1. Statement of the problem and the basic relations, Titan, 2014, no. 3 (45), pp. 45–54.Google Scholar
  21. 21.
    Polukhin, P.I., Gorelik, S.S., and Vorontsov, V.K., Fizicheskie osnovy plasticheskoi deformatsii (Physical Principles of Plastic Deformation), Moscow: Metallurgiya, 1982.Google Scholar
  22. 22.
    Bernshtein, M.L. and Zaimovskii, V.A., Struktura i mekhanicheskie svoistva metallov (The Structure and Mechanical Properties of Metals), Moscow: Metallurgiya, 1970.Google Scholar
  23. 23.
    Ageev, N.V., Rubina, E.B., and Kovaleva, V.N., Basic and pyramidal slip in Ti–Al–Sn single-crystal single crystals, Fiz. Met. Metalloved., 1984, vol. 58, no. 2, pp. 383–388.Google Scholar
  24. 24.
    Rubina, E.B. and Betsofen, S.Ya., Mechanism of plastic deformation of titanium alpha-alloy titanium-aluminum-vanadium, Fiz. Met. Metalloved., 1990, no. 4, pp. 191–198.Google Scholar
  25. 25.
    Maddin, R. and Chen, N.K., Geometrical aspect of the plastic deformation of metal single crystals, Acta Metall., 1954, vol. 2, pp. 49–51.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Yu. Musienko
    • 1
    Email author
  • V. P. Leonov
    • 1
  • I. R. Kozlova
    • 1
  • S. N. Petrov
    • 1
  1. 1.National Research Center Kurchatov Institute—Central Research Institute of Structural Materials PrometeySt. PetersburgRussia

Personalised recommendations