Inorganic Materials: Applied Research

, Volume 9, Issue 6, pp 1035–1043 | Cite as

Structural Features of Niobium Carbide Disperse Particles in the Structure of Heat-Resistant Alloys Based on Fe–25Cr–35Ni System

  • S. Yu. KondratievEmail author
  • E. V. Sviatysheva
  • S. N. Petrov

Abstract—The structure of hardening niobium carbide particles in a cast heat-resistant alloy based on the Fe–Cr–Ni–C system modified with Nb and Ti is studied by means of optical and electron microscopy. It is established that the particles of niobium carbide in the structure of the cast alloy can be considered as multiphase polycrystalline clusters that are heterogeneous in chemical composition and crystalline structure. Possible reasons for a complicated polycrystalline structure of niobium carbide particles are presented.


cast heat-resistant refractory alloys microstructure phase composition carbide phases electron microscopy 



  1. 1.
    Garbiak, M., Jasiński, W., and Piekarski, B., Materials for reformer furnace tubes. History of evolution, Arch. Foundry Eng., 2011, vol. 11, suppl. 2, pp. 47–52.Google Scholar
  2. 2.
    Bonaccorsi, L., Guglielmino, E., Pino, E., Servetto, C., and Sili, A., Damage analysis in Fe–Cr–Ni centrifugally cast alloy tubes for reforming furnaces, Eng. Failure Anal., 2014, vol. 36, pp. 65–74.CrossRefGoogle Scholar
  3. 3.
    Ilman, M.N. and Kusmono, Analysis of material degradation and life assessment of 25Cr–38Ni–Mo–Ti wrought alloy steel (HPM) for cracking tubes in an ethylene plant, Eng. Failure Anal., 2014, vol. 42, pp. 100–108.CrossRefGoogle Scholar
  4. 4.
    Tawancy, H. M., Ul-Hamid, A., Mohammed, A.I., and Abbas, N.M., Effect of materials selection and design on the performance of an engineering product An example from petrochemical industry, Mater. Des., 2007, vol. 28, no. 2, pp. 686–703. doi 10.1016/j.matdes.2005.07.003CrossRefGoogle Scholar
  5. 5.
    Kaya, A.A., Krauklis, P., and Young, D.J., Microstructure of HK40 alloy after high-temperature service in oxidizing/carburizing environment: I. Oxidation phenomena and propagation of a crack, Mater. Charct., 2002, vol. 49, no. 1, pp. 11–21.CrossRefGoogle Scholar
  6. 6.
    Kaya, A.A., Microstructure of HK40 alloy after high-temperature service in oxidizing/carburizing environment: II. Carburization and carbide transformations, Mater. Charact., 2002, vol. 49, no. 1, pp. 23–34.CrossRefGoogle Scholar
  7. 7.
    De Almeida, L.H., Ribeiro, A.F., and Le May, I., Microstructural characterization of modified 25Cr–35Ni centrifugally cast steel furnace tubes, Mater. Charact., 2003, vol. 49, no. 3, pp. 219–229.CrossRefGoogle Scholar
  8. 8.
    Kenik, E.A., Maziasz, P.J., Swindeman, R.W., Cervenka, J., and May, D., Structure and phase stability in cast modified-HP austenite after long-term ageing, Scr. Mater., 2003, vol. 49, no. 2, pp. 117–122.CrossRefGoogle Scholar
  9. 9.
    Rudskoy, A.I., Oryshchenko, A.S., Kondrat’ev, S.Yu., Anastasiadi, G.P., Fuks, M.D., and Petrov, S.N., Special features of structure and long-term strength of cast refractory alloy 45Kh26N33S2B2, Met. Sci. Heat Treat., 2013, vol. 55, nos. 3–4, pp. 209–215. doi 10.1007/s11041-013-9607-7CrossRefGoogle Scholar
  10. 10.
    Rudskoi, A.I., Anastasiadi, G.P., Kondrat’ev, S.Yu., Oryshchenko, A.S., and Fuks, M.D., Effect of electron factor (number of electron holes) on kinetics of nucleation, growth, and dissolution of phases during long-term high-temperature holdings of 0.45C–26Cr–33Ni–2Si–2Nb superalloy, Phys. Met. Metallogr., 2014, vol. 115, no. 1, pp. 1–11.CrossRefGoogle Scholar
  11. 11.
    Sustaita-Torres, I.A., Haro-Rodríguez, S., Guerrero-Mata, M.P., De La Garza, M., Valdés, E., Deschaux-Beaume, F., and Colás, R., Aging of cast 35Cr–45Ni heat resistant alloy, Mater. Chem. Phys., 2012, vol. 133, pp. 1018–1023.CrossRefGoogle Scholar
  12. 12.
    Monobe, L.S. and Schőn, C.G., Microstructural and fractographic investigation of a centrifugally cast 20Cr32Ni + Nb alloy tube in the as cast and aged states, J. Mater. Res. Technol., 2013, vol. 2, no. 2, pp. 195–201.CrossRefGoogle Scholar
  13. 13.
    Wang, W.Z., Xuan, F.Z., Wang, Z.D., and Liu, C.J., Effect of overheating temperature on the microstructure and creep behavior of HP40Nb alloy, Mater. Des., 2011, vol. 32, pp. 4010–4016.CrossRefGoogle Scholar
  14. 14.
    Borjali, S., Allahkaram, S.R., and Khosravi, H., Effects of working temperature and carbon diffusion on the microstructure of high pressure heat-resistant stainless steel tubes used in pyrolysis furnaces during service condition, Mater. Des., 2012, vol. 34, pp. 65–73.CrossRefGoogle Scholar
  15. 15.
    Rudskoy, A.I., Oryshchenko, A.S., Kondrat’ev, S.Yu., Anastasiadi, G.P., and Fuks, M.D., Mechanisms and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 in long-term high-temperature holds. Part 1, Met. Sci. Heat Treat., 2014, vol. 56, nos. 1–2, pp. 3–8. doi 10.1007/s11041-014-9692-2CrossRefGoogle Scholar
  16. 16.
    Rudskoy, A.I., Kondrat’ev, S.Yu., Anastasiadi, G.P., Oryshchenko, A.S., and Fuks, M.D., Mechanisms and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 in long-term high-temperature holds. Part 2, Met. Sci. Heat Treat., 2014, vol. 56, nos. 3–4, pp. 124–130. doi 10.1007/s11041-014-9717-xCrossRefGoogle Scholar
  17. 17.
    Rudskoy, A.I., Kondrat’ev, S.Yu., Anastasiadi, G.P., Oryshchenko, A.S., Fuks, M.D., and Petrov, S.N., Transformation of the structure of refractory alloy 0.45C–26Cr–33Ni–2Si–2Nb during a long-term high-temperature hold, Met. Sci. Heat Treat., 2014, vol. 55, nos. 9–10, pp. 517–525. doi 10.1007/s11041-014-9664-6CrossRefGoogle Scholar
  18. 18.
    Piekarski, B., Effect of Nb and Ti additions on microstructure and identification of precipitates in stabilized Ni–Cr cast austenitic steels, Mater. Charact., 2001, vol. 47, pp. 181–186.CrossRefGoogle Scholar
  19. 19.
    De Almeida Soares, G.D., De Almeida, L.H., Da Silveira, T.L., and Le May, I., Niobium additions in HP heat-resistant cast stainless steels, Mater. Charact., 1992, vol. 29, no. 3, pp. 387–396.CrossRefGoogle Scholar
  20. 20.
    Buchanan, K.G. and Kral, M.V., Crystallography and morphology of niobium carbide in as-cast HP-niobium reformer tubes, Metall. Mater. Trans. A, 2012, vol. 43, no. 6, pp. 1760–1769. doi 10.1007/s11661-011-1025-0CrossRefGoogle Scholar
  21. 21.
    Buchanan, K.G., Kral, M.V., and Bishop, C.M., Crystallography and morphology of MC carbides in niobium-titanium modified as-cast HP alloys, Metall. Mater. Trans. A, 2014, vol. 45, no. 8, pp. 3373–3385. doi 10.1007/s11661-014-2285-2CrossRefGoogle Scholar
  22. 22.
    Nunes, F.C., De Almeida, L.H., Dille, J., Delplancke, J.-L., and Le May, I., Microstructural changes caused by yttrium addition to NbTi-modified centrifugally cast HP-type stainless steels, Mater. Charact., 2007, vol. 58, pp. 132–142.CrossRefGoogle Scholar
  23. 23.
    Kondrat’ev, S.Yu., Ptashnik, A.V., Anastasiadi, G.P., and Petrov, S.N., Analysis of transformations of carbide phases in alloy 25Cr35Ni by the method of quantitative electron microscopy, Met. Sci. Heat Treat., 2015, vol. 57, nos. 7–8, pp. 402–409. doi 10.1007/s11041-015-9896-0CrossRefGoogle Scholar
  24. 24.
    Yan, J., Gao, Y., Yang, F., Yao, C., Ye, Z., Yi, D., and Ma, S., Effect of tungsten on the microstructure evolution and mechanical properties of yttrium modified HP40Nb alloy, Mater. Sci. Eng., A, 2011, vol. 529, pp. 361–369.CrossRefGoogle Scholar
  25. 25.
    Sourmail, T., Precipitates in creep resistant austenitic stainless steels, Mater. Sci. Technol., 2001, vol. 17, no. 1, pp. 1–14.CrossRefGoogle Scholar
  26. 26.
    Rybin, V.V., Rubtsov, A.S., and Nesterova, E.V., The method of single reflexes (OR) and its application in electron microscopy analysis of dispersed phases, Zavod. Lab., 1982, no. 5, pp. 16–21.Google Scholar
  27. 27.
    Rodionova, I.G., Zaitsev, A.I., Shaposhnikov, N.G., Chirkina, I.N., Pokrovsky, A.M., Nemtinov, A.A., Mishnev, P.A., and Kuznetsov, V.V., Effect of chemical composition and production parameters on nanostructured component formation and a set of properties for high-strength low-alloy structural steels, Metallurgist, 2010, vol. 54, nos. 5–6, pp. 343–352. doi 10.1007/s11015-010-9301-6CrossRefGoogle Scholar
  28. 28.
    Mao, Z., Chen, W., Seidman, D.N., and Wolverton, C., First-principles study of the nucleation and stability of ordered precipitates in ternary Al–Sc–Li alloys, Acta Mater., 2011, vol. 59, no. 8, pp. 3012–3023.CrossRefGoogle Scholar
  29. 29.
    Monachon, C., Krug, M.E., Seidman, D.N., and Dunand, D.C., Chemistry and structure of core/double-shell nanoscale precipitates in Al–6.5Li–0.07Sc–0.02Yb (at %), Acta Mater., 2011, vol. 59, no. 9, pp. 3398–3409.CrossRefGoogle Scholar
  30. 30.
    Formenti, A., Eliasson, A., Mitchell, A., and Fredriksson, H., Solidification sequence and carbide precipitation in Ni-base superalloys IN718, IN625, and IN939, High Temp. Mater. Process., 2005, vol. 24, no. 4, pp. 239–258. doi 10.1515/HTMP.2005.24.4.239Google Scholar
  31. 31.
    Nunes, F.C., Dille, J., Delplancke, J.-L., and De Almeida, L.H., Yttrium addition to heat-resistant cast stainless steel, Scr. Mater., 2006, vol. 54, no. 9, pp. 1553–1556.CrossRefGoogle Scholar
  32. 32.
    Konno, T.J., Miura, E., Tanaka, A., and Hanada, Sh., A TEM study on the semicoherent precipitates in a Nb–19%Mo alloy, Acta Mater., 2005, vol. 53, no. 6, pp. 1783–1789.CrossRefGoogle Scholar
  33. 33.
    Billingham, J., Bell, P.S., and Lewis, M.H., Vacancy short-range order in substoichiometric transition metal carbides and nitrides with the NaCl structure. I. Electron diffraction studies of short-range ordered compounds, Acta Crystallogr. A, 1972, vol. 28, no. 6, pp. 602–606. doi 10.1107/S0567739472001524CrossRefGoogle Scholar
  34. 34.
    Landesman, J.P., Christensen, A.N., De Novion, C.H., Lorenzelli, N., and Convert, P., Order-disorder transition and structure of the ordered vacancy compound Nb6C5: powder neutron diffraction studies, J. Phys. C: Solid State Phys., 1985, vol. 18, no. 4, pp. 809–824.CrossRefGoogle Scholar
  35. 35.
    Kesri, R. and Hamar-Thibault, S., Structures ordonnees a longue distance dans les carbures mc dans les fonts, Acta Metall., 1988, vol. 36, no. 1, pp. 149–166.CrossRefGoogle Scholar
  36. 36.
    Gusev, A.I. and Rempel, A.A., Order-disorder phase transition channel in niobium carbide, Phys. Status Solidi A, 1986, vol. 93, no. 1, pp. 71–80.CrossRefGoogle Scholar
  37. 37.
    Steel Castings Handbook, Suppl. 9: High Alloy Data Sheets, Heat Series, Crystal Lake, IL: Steel Founders’ Soc. Am., 2004.Google Scholar
  38. 38.
    Ibanez, R.A.P., De Almeida Soares, G.D., De Almeida, L.H., and Le May, I., Effects of Si content on the microstructure of modified-HP austenitic steels, Mater. Charact., 1993, vol. 30, pp. 243–249.CrossRefGoogle Scholar
  39. 39.
    Caballero, F.G., Imizcoz, P., Lopez, V., Alvarez, L.F., and Garcia de Andres, C., Use of titanium and zirconium in centrifugally cast heat resistant steel, Mater. Sci. Technol., 2007, vol. 23, no. 5, pp. 528–534.CrossRefGoogle Scholar
  40. 40.
    Brizes, W.F., Cadoff, L.H., and Tobin, J.M., Carbon diffusion in the carbides of niobium, J. Nucl. Mater., 1966, vol. 20, no. 1, pp. 57–67.CrossRefGoogle Scholar
  41. 41.
    Talis, A. and Kraposhin, V., Finite noncrystallographic groups, 11-vertex triangulated clusters, and polymorphic transformations in metals, Acta Cryst. A, 2014, vol. 70, pp. 616–625.CrossRefGoogle Scholar
  42. 42.
    Kondrat’ev, S.Yu., Kraposhin, V.S., Anastasiadi, G.P., and Talis, A.L., Experimental observation and crystallographic description of M7C3 carbide transformation in Fe–Cr–Ni–C HP type alloy, Acta Mater., 2015, vol. 100, pp. 275–281.CrossRefGoogle Scholar
  43. 43.
    Kraposhin, V.S., Talis, A.L., Demina, E.D., and Zaitsev, A.I., Crystal geometry mechanism of intergrowth of spinel and manganese sulfide into a complex nonmetallic inclusion, Met. Sci. Heat Treat., 2015, vol. 57, nos. 7–8, pp. 371–378.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. Yu. Kondratiev
    • 1
    Email author
  • E. V. Sviatysheva
    • 2
  • S. N. Petrov
    • 2
  1. 1.Peter the Great Saint-Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.National Research Center Kurchatov Institute—Central Research Institute of Structural Materials PrometeySt. PetersburgRussia

Personalised recommendations