Inorganic Materials: Applied Research

, Volume 9, Issue 6, pp 997–1005 | Cite as

Structure Changes of High-Strength Economically Alloyed Steel 09KhGN2MD (09CrMnNi2MoCu) In Tempering

  • M. V. GolubevaEmail author
  • O. V. Sych
  • E. I. Khlusova
  • G. D. Motovilina
  • E. V. Sviatysheva
  • S. V. Rogozhkin
  • A. A. Lukyanchuk


The purpose of the present investigation is to determine the heat treatment parameters that ensure yield strength over 690 MPa in combination with toughness of at least 35 J/cm2 at temperature of –70°C in new economically alloyed cold-resistant steel. The effect of various quenching and tempering parameters on mechanical properties, structure of steel, and fracture mode of samples after impact tests at temperature of –70°C has been studied. The relationship between the properties, structure, and fracture mode of steel samples is shown. The heat treatment parameters of the investigated steel are determined.


economically alloyed high-strength steel cold resistance reduction of carbon equivalent scanning electron microscopy transmission electron microscopy mechanical properties structure bainite martensite quenching tempering 



Investigate were performed on the equipment of the laboratory of the Test and Technical Complex of Irradiated and Radionuclide Materials and the Center for Collective Use Composition, Structure, and Properties of Structural and Functional Materials of the National Research Center Kurchatov Institute—CRISM Prometey with financial support of the Ministry of Education and Science of the Russian Federation within the framework of agreement 14.595.21.0004.


  1. 1.
    Nastich, S.Yu., Morozov, Yu.D., Marchenko, V.N., Stepashin, A.M., Zyryanov, V.V., and Sorokolet, O.V., New wear-resistant 17KhGN2MFBT steel for bodies of dump trucks, Stal’, 2005, no. 3, pp. 82–85.Google Scholar
  2. 2.
    Nastich, S.Yu., Morozov, Yu.D., Marchenko, V.N., Stepashin, A.M., Zyryanov, V.V., and Sorokolet, O.V., Development and commercial use of weldable high-strength cold-resistant steel for load-bearing structures in transportation engineering, Metallurgist, 2005, vol. 49, nos. 5–6, pp. 189–194.CrossRefGoogle Scholar
  3. 3.
    Rybin, V.V., Malyshevskii, V.A., and Khlusova, E.I., Vysokoprochnye svarivaemye stali (High-Strength Welded Steels), St. Petersburg: Politekh. Univ., 2016.Google Scholar
  4. 4.
    Semicheva, T.G., Khlusova, E.I., and Sherokhina, L.G., Carbide formation and embrittlement during the shipbuilding steel temper, Vopr. Materialoved., 2005, no. 2 (42), pp. 69–78.Google Scholar
  5. 5.
    Golosienko, S.A., Motovilina, G.D., and Khlusova, E.I., Strength improvement of economically alloyed high-strength steels due to formation of nanosized carbides, Vopr. Materialoved., 2010, no. 3 (59), pp. 52–64.Google Scholar
  6. 6.
    Khlusova, E.I., Orlov, V.V., Motovilina, G.D., Korchagin, A.M., and Matrosov, M.Yu., Effect of tempering on change of structure and properties of high-strength strip steel of strength category Kh90–Kh100 after thermomechanical treatment, Metallurgist, 2011, vol. 54, nos. 11–12, pp. 775–782.CrossRefGoogle Scholar
  7. 7.
    Kondrat’ev, S. Yu., Sviatysheva, E.V., Anastasiadi, G.P., and Petrov, S.N., Fragmented structure of niobium carbide particles in As-cast modified HP alloys, Acta Mater., 2017, vol. 127, pp. 267–276.Google Scholar
  8. 8.
    Rogozhkin, S.V., Aleev, A.A., Lukyanchuk, A.A., Shutov, A.S., Raznitsyn, O.A., and Kirillov, S.E., An atom probe tomography prototype with laser evaporation, Instrum. Exper. Tech., 2017, vol. 60, no. 3, pp. 428–433.CrossRefGoogle Scholar
  9. 9.
    Raznitsyn, O.A., Lukyanchuk, A.A., Shutov, A.S., Rogozhkin, S.V., and Aleev, A.A., Optimization of material analysis conditions for laser-assisted atom probe tomography characterization, J. Anal. Chem., 2017, vol. 72, no. 14, pp. 1404–1410.CrossRefGoogle Scholar
  10. 10.
    Golubeva, M.V., Sych, O.V., Khlusova, E.I., and Motovilina, G.D., The mechanical properties and destruction behavior of a new economically alloyed cold-resistant steel with a guaranteed yield point of 690 MPa, Aviats. Mater. Tekhnol., 2017, no. 4 (49), pp. 19–24.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. V. Golubeva
    • 1
    Email author
  • O. V. Sych
    • 1
  • E. I. Khlusova
    • 1
  • G. D. Motovilina
    • 1
  • E. V. Sviatysheva
    • 1
  • S. V. Rogozhkin
    • 2
    • 3
  • A. A. Lukyanchuk
    • 2
  1. 1.National Research Center Kurchatov Institute—CRISM PrometeySt. PetersburgRussia
  2. 2.National Research Center Kurchatov Institute—Institute for Theoretical and Experimental PhysicsMoscowRussia
  3. 3.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations