Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 6, pp 1123–1131 | Cite as

Researching the Interface of Polymer Matrices with Optical Fibers in Smart Materials

  • M. Yu. FedotovEmail author
  • A. M. Shienok
  • R. R. MukhametovEmail author
  • I. N. Gulyaev
POLYMER COMPOSITE MATERIALS

Abstract

The interface of a polymer matrix with silica-based optical fibers covered with a protective layer is studied using the methods of microstructural analysis. The compatibility of the protective layer with the polymer matrix is investigated by IR spectroscopy taking into account the modes of curing.

Keywords:

polymer matrix optical fiber optical fiber sensor quantitative microstructural analysis smart materials 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (grant no. 13-03-12047 ofi_m).

REFERENCES

  1. 1.
    Gunyaeva, A.G., Chursova, L.V., Fedotov, M.Yu., and Cherfas, L.V., Analysis of carbon fiber reinforced plastic with nanomodified lightning-protection coating and integrated control system based on fiber Bragg gratings, Vopr. Materialoved., 2016, no. 1 (85), pp. 80–91.Google Scholar
  2. 2.
    Gunyaeva, A.G., Cherfas, L.V., Komarova, O.A., and Fedotov, M.Yu., Development of a lightning-protection coating based on carbon fabric with metallic inclusions and its possible application in the construction of a wing of a la made of carbon fiber, Materialy molodezhnoi konferentsii “Fundamental’nye nauchnye osnovy sovremennykh kompleksnykh metodov issledovanii i ispytanii materialov, a takzhe elementov konstruktsii” (Proc. Youth Conf. “Fundamental Scientific Principles of Modern Complex Methods of Studies and Testing of Materials Including Elements of Constructions”), Moscow: Vseross. Inst. Aviats. Mater., 2015, p. 6.Google Scholar
  3. 3.
    Goncharov, V.A. and Fedotov, M.Yu., Modeling of physical and mechanical properties of intelligent carbon fiber with optic fiber sensors, Materialy V mezhdunarodnoi konferentsii “Deformatsiya i razrushenie materialov i nanomaterialov,” 26–29 noyabrya 2013 g. (Proc. V Int. Conf. “Deformation and Fracture of Materials and Nanomaterials,” November 26–29, 2013), Moscow: Inst. Metall. Materialoved., Ross. Akad. Nauk, 2013.Google Scholar
  4. 4.
    Gulyaev, I.N., Gunyaev, G.M., and Raskutin, A.E., Polymer composite materials with functions of adaptation and state diagnostics, Aviats. Mater. Tekhnol., 2012, suppl., pp. 242–253.Google Scholar
  5. 5.
    Fedotov, M.Yu., Goncharov, V.A., and Shienok, A.M., Advanced intelligent polymer composite materials, Materialy konferentsii “Novye materialy i tekhnologii glubokoi pererabotki syr’ya—osnova innovatsionnogo razvitiya ekonomiki Rossii” (Proc. Conf. “New Materials and Technologies of Deep Processing of Raw Materials as a Basis of Innovative Development of Russian Economics”), Moscow: Vseross. Inst. Aviats. Mater., 2012.Google Scholar
  6. 6.
    Fedotov, M.Yu., Creation and development of intelligent materials: a review, Aviats. Mater. Tekhnol., 2015, no. 1 (34), pp. 71–80.Google Scholar
  7. 7.
    Shishkin V.V., Terentyev V.S., Kharenko D.S., Dostovalov, A.V., Wolf, A.A., Simonov, V.A., Babin S.A., Shelemba I.S., Fedotov, M.Yu., and Shienok A.M., Fiber-optic sensors based on FBGs with increased sensitivity difference embedded in polymer composite material for separate strain and temperature Measurements, Proc. Int. Conf. on Smart Infrastructure and Construction “Transforming the Future of Infrastructure through Smarter Information,” London: ICE Publ., 2016, pp. 75–79. doi 10.1680/tfitsi.61279.75Google Scholar
  8. 8.
    Shishkin, V.V., Terentiev, V.S., Kharenko, D.S., Dostovalov, A.V., Wolf, A.A., Simonov, V.A., Fedotov, M.Yu., Shienok, A.M., Shelemba, I.S., and Babin, S.A., Experimental method of temperature and strain discrimination in polymer composite material by embedded fiber-optic sensors based on femtosecond-inscribed FBGs, J. Sens., 2016, art. ID 3230968.Google Scholar
  9. 9.
    Kablov, E.N., Gunyaeva, A.G., Komarova, O.A., Cherfas, L.V., and Fedotov, M.Yu., RF Patent 2588552, Byull. Izobret., 2016, no. 18.Google Scholar
  10. 10.
    Zhelezina, G.F., Sivakov, D.V., and Gulyaev, I.N., Built-in control: from sensors to smart materials, Aviats. Prom-st, 2008, no. 3, pp. 46–50.Google Scholar
  11. 11.
    Gnusin, P.I., Vasil’ev, S.A., Medvedkov, O.I., Grekov, M.V., Dianov, E.M., Gulyaev, I.N., and Sivakov, D.V., Fiber gratings as sensitive elements in composite materials, Foton-Ekspress, 2009, no. 6 (78), pp. 90–91.Google Scholar
  12. 12.
    Nazirov, M.F., Zhukov, Yu.A., and Yakovitskaya, S.Yu., Measurement of the deformed state of samples using fiber-optic sensors embedded into the structure of a composite material, Vopr. Oboronnoi Tekhn., Ser. 16: Tekh. Sredstva Protivodeistviya Terrorizmu, 2015, nos. 9–10, pp. 95–101.Google Scholar
  13. 13.
    Ellerbrock, P.J., Belk, J.H., and Johnson, B.C., US Patent 6 204 920, 2008.Google Scholar
  14. 14.
    Koyata, S. and Takaishi, K., WO Patent 2005098921, 2005.Google Scholar
  15. 15.
    Kojima, M., Ogisu, T., Takeda, N., et al., JP Patent 2007232371, 2007.Google Scholar
  16. 16.
    Kim, S.-W., Jeong, M.-S., Lee, I., Kim, E.-H., Kwon, I.-B., and Hwang, T.-K., Determination of the maximum strains experienced by composite structures using metal coated optical fiber sensors, Compos. Sci. Technol., 2013, vol. 78, no. 1, pp. 48–55.CrossRefGoogle Scholar
  17. 17.
    Di Sante, R. and Donati, L., Strain monitoring with embedded Fiber Bragg Gratings in advanced composite structures for nautical applications, Measurement, 2013, vol. 46, no. 7, pp. 2118–2126.CrossRefGoogle Scholar
  18. 18.
    Kojovi, A., Zivkovi, I., Brajovi, L., Mitrakovi, D., and Aleksi, R., Laminar composite materials damage monitoring by embedded optical fibers, Proc. 16th European Conf. of Fracture “Fracture of Nano and Engineering Materials and Structures,” Alexandroupolis, Greece, July 3–7, 2006, Berlin: Springer-Verlag, 2006, pp. 1035–1036.Google Scholar
  19. 19.
    Vincenzini, P., Casciati, F., and Rizzo, P., Smart composite device for structural health monitoring, Adv. Sci. Technol., 2012, vol. 83, pp. 138–143.CrossRefGoogle Scholar
  20. 20.
    Deev, I.S. and Kobets, L.P., Study of the microstructure and specifics of destruction of epoxide matrices, Polym. Sci., Ser. D, 2014, vol. 7, no. 1, pp. 49–56.Google Scholar
  21. 21.
    Deev, I.S., Kablov, E.N., Kobets, L.P., and Chursova, L.V., Scanning electron microscopy of the deformation of the microphase structure of polymer matrices under mechanical load, Tr. Vseross. Inst. Aviats. Mater., 2014, no. 7, p. 6. doi 10.18577/2307-6046-2014-0-7-6-6. http://www.viam-works.ru. Accessed March 16, 2016.Google Scholar
  22. 22.
    Babin, A.N., Binders for new polymer composites, Tr. Vseross. Inst. Aviats. Mater., 2013, no. 4, pp. 11. http://www.viam-works.ru. Accessed March 16, 2016.Google Scholar
  23. 23.
    Mukhametov, R.R., Akhmadieva, K.R., Chursova, L.V., and Kogan, D.I., New polymer binders for advanced production of construction fiber polymer composite materials, Aviats. Mater. Tekhnol., 2011, no. 2, pp. 38–42.Google Scholar
  24. 24.
    Mukhametov, R.R., Akhmadieva, K.R., Kim, M.A., and Babin, A.N., Melt binders for advanced production of new polymer composite materials, Aviats. Mater. Tekhnol., 2012, suppl., pp. 260–265.Google Scholar
  25. 25.
    Sperling, L.H., Interpenetrating Polymer Networks and Related Materials, New York: Springer-Verlag, 1981.CrossRefGoogle Scholar
  26. 26.
    Gulyaev, A.I., Iskhodzhanova, I.V., and Zhuravleva, P.L., Quantitative analysis of the structure of polymer composite materials by optic microscopy, Tr. Vseross. Inst. Aviats. Mater., 2014, no. 7, p. 7. doi 10.18577/2307-6046-2014-0-7-7-7. http://www.viam-works.ru. Accessed March 16, 2016.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.CJSC “NIIIN MNPO “Spectr”MoscowRussia
  2. 2.All-Russian Scientific Research Institute of Aviation MaterialsMoscowRussia

Personalised recommendations