Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 5, pp 954–959 | Cite as

Synthesis and Characterization of Supercapacitor Electrode Materials Based on Carbon Fiber Materials and Metal Oxyhydroxides

  • S. I. Yusin
  • O. V. Karunina
New Technologies for Design and Processing of Materials

Abstract

Composite materials (CMs) based on activated carbon fiber material (ACFM) modified with oxygen-containing transition metal compounds (MnO2, Ni(OH)2, and Co(OH)2) by using colloid electrophoresis are studied. All prepared CMs have higher capacitance than the individual parental materials, with the CM ACFM–Ni(OH)2 exhibiting the maximum capacitance (~380 F g–1). Changes in the capacitances of ACFM and prepared ACFM-based CMs induced by potential cycling, the time of exposure to electrolyte solution, and potential scan rate are investigated. The capacitances of all CMs are found to increase with the number of cycles, but tend to decrease at higher potential scan rates.

Keywords

electrophoresis activated carbon fiber material manganese oxide nickel hydroxide cobalt hydroxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hu, C.C. and Tsou, T.W., Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition, Electrochem. Commun., 2002, vol. 4, no. 2, pp. 105–109.CrossRefGoogle Scholar
  2. 2.
    Fan, Z., Chen, J., Sun, F., Xu, Y., and Kuang, Y., Preparation and capacitive properties of cobalt-nickel oxides/carbon nanotube composites, Electrochimica Acta, 2007, vol. 91, pp. 50–57.Google Scholar
  3. 3.
    Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., et al., Progress of electrochemical capacitor electrode materials: a review, Int. J. Hydrogen Energy, 2009, vol. 34, pp. 4889–4899.CrossRefGoogle Scholar
  4. 4.
    Jagadale, A.D., Kumbhar, V.S., and Dhawale, D.S., Performance evaluation of symmetric supercapacitor based on cobalt hydroxide thin film electrodes, Electrochimica Acta, 2013, vol. 98, pp. 32–38.CrossRefGoogle Scholar
  5. 5.
    Butyrin, G.M., Vysokoporistye uglerodnye materialy (High-Porous Carbon Materials), Moscow: Khimiya, 1976.Google Scholar
  6. 6.
    Fialkov, A.S., Carbon application in chemical power sources, Russ. J. Electrochem., 2000, vol. 36, no. 4, pp. 345–366.CrossRefGoogle Scholar
  7. 7.
    Frackowiak, E. and Bequin, F., Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 2001, vol. 39, pp. 937–950.CrossRefGoogle Scholar
  8. 8.
    Rychagov, A.Yu., Urisson, N.A., and Vol’fkovich, Yu.M., Electrochemical characteristics and properties of the surface of activated carbon electrodes in a double-layer capacitor, Russ. J. Electrochem., 2001, vol. 37, no. 11, pp. 1172–1179.CrossRefGoogle Scholar
  9. 9.
    Reddy, R.N. and Reddy, R.G., Sol-gel MnO2 as an electrode material for electrochemical capacitors, J. Power Sources, 2003, vol. 124, pp. 330–337.CrossRefGoogle Scholar
  10. 10.
    Ma, S.-B., Nam, K.-W., Yoon, W.-S., Yang, X.-Q., et al., Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications, J. Power Sources, 2008, vol. 178, pp. 483–489.CrossRefGoogle Scholar
  11. 11.
    Yusin, S.I., The effect of conditions of electrochemical formation of composite electrode material of activated carbon-MnO2 on its properties, Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 2, pp. 248–252.CrossRefGoogle Scholar
  12. 12.
    Uvarov, N.F., Mateyshina, Yu.G., Ulihin, A.S., Yusin, S.I., et al., Surface electrochemical treatment of carbon materials for supercapacitors, ECS Trans., 2010, vol. 25, no. 21, pp. 11–16.CrossRefGoogle Scholar
  13. 13.
    Zamyatin, A.P. and Bek, R.Yu., About some regularities of metal distribution in depth of volume-flow porous electrode, Elektrokhimiya, 1980, vol. 16, no. 9, pp. 1316–1321.Google Scholar
  14. 14.
    Zhang, L.L., Wie, T., Wang, W., and Zhao, X.S., Manganese oxide–carbon composite as supercapacitor electrode materials, Microporous Mesoporous Mater., 2009, vol. 123, nos. 1–3, pp. 260–267.CrossRefGoogle Scholar
  15. 15.
    Wei, J., Nagarajan, N., and Zhitomirsky, I., Manganese oxide films for electrochemical supercapacitors, J. Mater. Process. Technol., 2007, vol. 186, pp. 356–361.CrossRefGoogle Scholar
  16. 16.
    Zemskova, L.A., Modified carbon fibers: Sorbents, electrode materials, and catalysts, Vestn. Dal’nevost. Otd., Ross. Akad. Nauk, 2009, no. 9, pp. 39–52.Google Scholar
  17. 17.
    Sheveleva, I.V., Zemskova, L.A., Voit, A.V., Zheleznov, S.V., and Kuryavyi, V.G., Relationship between electrochemical and structural properties of modified carbon fibers, Russ. J. Appl. Chem., 2007, vol. 80, no. 5, pp. 740–745.CrossRefGoogle Scholar
  18. 18.
    Artem’yanov, A.P. and Sheveleva, I.V., Electrochemical properties of fibrous and granulated carbon materials, Russ. J. Appl. Chem., 2004, vol. 77, no. 11, pp. 1793–1796.CrossRefGoogle Scholar
  19. 19.
    Rychagov, A.P. and Volfkovich, Yu.M., Interaction of activated carbon electrodes with sulfuric acid solutions, Russ. J. Electrochem., 2007, vol. 43, no. 11, pp. 1273–1278.CrossRefGoogle Scholar
  20. 20.
    Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbon Materials), Moscow: Nauka, 1984.Google Scholar
  21. 21.
    Varentsova, V.I., Varenstov, V.K., Bataev, I.A., and Yusin, S.I., Effect of surface state of carbon fiber electrode on copper electroplating from sulfate solutions, Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 1, pp. 43–47.CrossRefGoogle Scholar
  22. 22.
    Frackowiak, E. and Beguin, F., Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 2001, vol. 39, pp. 937–950.CrossRefGoogle Scholar
  23. 23.
    Jannakoudakis, A.D., Jannakoudakis, P.D., Theodoridou, E., and Besenhard, J.O., Electrochemical oxidation of carbon fibres in aqueous solutions and analysis of the surface oxides, J. Appl. Electrochem., 1990, vol. 20, pp. 619–624.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Solid State Chemistry and Mechanochemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations