Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 5, pp 978–984 | Cite as

Mesoporous Powders for Catalyst Supports Produced from Al2O3–ZrO2 (Y2O3) System

  • L. V. Morozova
  • I. A. Drozdova
  • T. V. Khamova
  • I. G. Polyakova
New Technologies for Design and Processing of Materials

Abstract

The liquid-phase method for synthesis of disperse mesoporous powders from the Al2O3–ZrO2 (Y2O3) system is developed. It is shown that cryotreatment makes possible to constrain particle agglomeration and obtain the precursors with the specific surface area of higher than 100 m2/g and pore volume ranging from 0.18–0.51 cm3/g. Influence of the aluminum oxide source (AlOOH, Al[(CH3)2CHO]3 and Al(NO3)3) on the powder dispersivity and pore structure is found, and this makes it possible to control their textural characteristics. It is found that the components obtained are two-phase (γ-Al2O3 + t-ZrO2); the size of the phases is not greater than 45 nm. Thermal treatment of nanocompositions within the Al2O3–ZrO2 (Y2O3) system at 700°C for 50 h keeps the nanosize of phases (<60 nm) and hardly changes the crystal structure. The experimental results described in this work make possible to recommend the materials obtained as precursor powders for catalyst supports in methane conversion to synthesis gas.

Keywords

liquid phase synthesis xerogel nanocomposites specific surface area mesopores 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguila, G., Gracia, F., and Araya, P., CuO and CeO2 catalysts supported on Al3O3, ZrO2 and SiO2 in the oxidation of CO at low temperature, Appl. Catal., A, 2008, vol. 343, no. 1, pp. 16–24.CrossRefGoogle Scholar
  2. 2.
    Kolesnikov, I.M., Kataliz i proizvodstvo katalizatorov (Catalysis and Production of Catalysts), Moscow: Tekhnika, 2004.Google Scholar
  3. 3.
    Chukin, G.D., Stroenie oksida alyuminiya i katalizatorov gidroobesserivaniya. Mekhanizmy reaktsii (The Structure of the Aluminium Oxide and Catalysts for Hydrodesulfurization: Mechanisms of Reactions), Moscow: Printa, 2010.Google Scholar
  4. 4.
    Ivanova, A.S., Highly dispersed zirconium-containing oxide systems: synthesis, properties, and applications, Kinet. Catal., 2001, vol. 42, no. 3, pp. 354–365.CrossRefGoogle Scholar
  5. 5.
    Han, S.W., Kim, D.H., Jeong, M.G., et al., CO oxidation catalyzed by NiO supported on mesoporous Al2O3 at room temperature, Chem. Eng. J., 2016, vol. 283, pp. 992–998.CrossRefGoogle Scholar
  6. 6.
    Demidov, D.V., Sakharovskii, Yu.A., and Rozenkevich, M.B., Nickel-zirconium catalysts for production of synthesis-gas by the vapor-dioxide conversion of methane, Usp. Khim. Khim. Tekhnol., 2012, vol. 26, no. 7, pp. 63–68.Google Scholar
  7. 7.
    Zharnyl’skaya, A.L., Vol’khin, V.V., Shcherban’, M.G., and Reuter, H., Synthesis of a precursor for an alumina ceramic reinforced by zirconium dioxide from inorganic compounds in the presence of urea, Russ. J. Appl. Chem., 2008, vol. 81, no. 7, pp. 1147–1152.CrossRefGoogle Scholar
  8. 8.
    Kul’kov, S.N. and Grigor’ev, M.N., Specific synthesis of ceramics based on Al2O3 powders with different dispersion, Perspekt. Mater., 2010, no. 6, pp. 73–75.Google Scholar
  9. 9.
    Morozova, L.V., Kalinina, M.V., Panova, T.I., Arsent’ev, M.Y., Khamova, T.V., Drozdova, I.A., and Shilova, O.A., Synthesis and study of mesoporous xerogels and nanopowders of a metastable solid solution 97ZrO2–3Y2O3 for the fabrication of catalyst substrates, Glass Phys. Chem., 2016, vol. 42, no. 3, pp. 277–283.CrossRefGoogle Scholar
  10. 10.
    Hanink, R.H.J., Kelly, P.M., and Muddle, B.C., Transformation toughening in zirconia-containing ceramics, J. Am. Ceram. Soc., 2000, vol. 83, no 3, pp. 461–487.Google Scholar
  11. 11.
    Panova, T.I., Arsent’ev, M.Yu., Morozova, L.V., and Drozdova, I.A., Synthesis and investigation of the structureof ceramic nanopowders in the ZrO2–CeO2–Al2O3 system, Glass Phys. Chem. 2010, vol. 36, no. 4, pp. 470–477.Google Scholar
  12. 12.
    Morozova, L.V., Kalinina, M.V., Arsent’ev, M.Yu., and Shilova, O.A., Influence of cryochemical and ultrasonic processing on the texture and thermal decomposition of xerogels and properties of nanoceramics in the ZrO2 Y2O3–Al2O3 system, Inorg. Mater., 2017, vol. 53, no. 6, pp. 640–647.CrossRefGoogle Scholar
  13. 13.
    Fedorov, P.P., Maslov, V.A., Usachev, V.A., and Kononenko, N.E., Synthesis of laser ceramics based on nano-dispersed powders of yttrium aluminium garnet Y3Al5O12, Inzh. Zh.: Nauka Innovatsii, 2012, no. 8 (8), pp. 28–44.Google Scholar
  14. 14.
    Gusev, A.I., Certification of nanocrystalline materials by particle (grain) size, Metallofiz. Nov. Tekhnol., 2008, vol. 30, no. 5, pp. 679–694.Google Scholar
  15. 15.
    Yagodkin, Yu.D. and Dobatkin, S.V., The use of electron microscopy and X-ray crystallography to determine the size of structural elements in nanocrystalline materials: a review, Zavod. Lab., Diagn. Mater., 2007, vol. 73, no. 1, pp. 38–49.Google Scholar
  16. 16.
    Doroshkevich, A.S., Danilenko, I.A., and Konstantinova, T.E., The formation of nanocrystalline particles in the system ZrO2–3 mol % Y2O3, Fiz. Tekh. Vys. Davlenii (Donetsk), 2002, vol. 12, no. 3, pp. 38–47.Google Scholar
  17. 17.
    Generalov, M.B., Kriokhimicheskaya nanotekhnologiya (Cryochemical Nanotechnology), Moscow: Akademkniga, 2006.Google Scholar
  18. 18.
    Gregg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, London: Academic, 1982.Google Scholar
  19. 19.
    Grinberg, E.E., Sudarikova, E.Yu., Syrychko, V.V., et al., Technological aspects of preparation of highpurity compounds for sol-gel and pyrolytic synthesis methods, Glass Phys. Chem., 2008, vol. 34, no. 4, pp. 515–518.CrossRefGoogle Scholar
  20. 20.
    Kuznetsova, T.G. and Sadykov, V.A., Specific features of the defect structure of metastable nanodisperse ceria, zirconia, and related materials, Kinet. Catal., 2008, vol. 49, no. 6, pp. 840–858.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. V. Morozova
    • 1
  • I. A. Drozdova
    • 1
  • T. V. Khamova
    • 1
  • I. G. Polyakova
    • 1
  1. 1.Grebenshchikov Institute of Silicate Chemistry of RASSt. PetersburgRussia

Personalised recommendations