Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 5, pp 900–905 | Cite as

Magnetic Properties of the Sm(Co0.45Fe0.15Cu0.40)5 Alloy Prepared by Strip Casting

  • A. A. Lukin
  • N. B. Kolchugina
  • Yu. S. Koshkid’ko
  • A. V. Kamynin
  • D. Yu. Vasilenko
General-Purpose Materials
  • 14 Downloads

Abstract

The magnetic properties and phase composition of the Sm(Co0.45Fe0.15Cu0.40)5 alloy prepared by the strip-casting technique (the casting of alloy on a water-cooled copper wheel at a velocity of cooling surface of ~1 m/s) are studied. Curves of magnetization of thermally demagnetized starting plates (after strip casting) and plates subjected to low-temperature treatment at 350°С for 120 h and the hysteresis loops were measured in magnetizing fields of up to 140 kOe. It is shown that the magnetization of samples (σ140 and σr) substantially decreases after the annealing; in this case, the coercive force (jHc) increases abruptly. It is assumed that the observed regularities of magnetic hardening can be related to the existence of nanosized Cu-enriched areas, within which the antiferromagnetic order in the Sm(Co, Fe, Cu)5 lattice is realized. These areas in the ferromagnetic phase with the lower copper content can be domain-wall pinning centers.

Keywords

Sm(Co0.45Fe0.15Cu0.40)5 alloy strip casting structure magnetic properties hysteretic characteristics antiferromagnetic order 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hadjipanayis, G.C., Tang, W., Zhang, Y., Chui, S.T., Liu, J. F., Chen, C., and Kronmüller, H., High temperature 2: 17 magnets: Relationship of magnetic properties to microstructure and processing, IEEE Trans. Magn., 2000, vol. 36, no. 5, pp. 3382–3387.CrossRefGoogle Scholar
  2. 2.
    Gopalan, R., Hono, K., Yan, A., and Gutfleisch, O., Direct evidence for Cu concentration variation and its correlation to coercivity in Sm(Co0.74-Fe0.1Cu0.12Zr0.04)7.4 ribbons, Scr. Mater., 2009, vol. 60, pp. 764–767.CrossRefGoogle Scholar
  3. 3.
    Liu, L., Liu, Z., Chen, R., Liu, X., Yan, A., Lee, D., and Li, W., Effect of strip casting on microstructure and magnetic properties of 2:17 type Sm–Co sintered magnets, IEEE Trans. Magn., 2014, vol. 50, no. 1, p. 2101704.Google Scholar
  4. 4.
    Liu, Z., Liu, L., Chen, R.J., Sun, Y.L., Lee, D., and Yan, A.R., Optimization of temperature coefficient of remanence and magnetic properties of sintered Sm0.7Dy0.1Gd0.2(CobalFe0.2Cu0.08Zr0.025)7.2 magnets prepared by strip-casting technique, IEEE Trans. Magn., 2013, vol. 49, no. 12, pp. 5599–5603.CrossRefGoogle Scholar
  5. 5.
    Liu, L, Liu, Z., Zhang, X., Feng, Y., Wang, C., Sun, Y., Lee, D., Yan, A., and Wu, Q., Magnetization reversal process in (Sm, Dy, Gd) (Co, Fe, Cu, Zr)z magnets with different cellular structures, AIP Adv., 2017, vol. 7, p. 056221.CrossRefGoogle Scholar
  6. 6.
    Machida, H., Fujiwara, T., Kamada, R., Morimoto, Y., and Takezawa, M., The high squareness Sm–Co magnet having H cb = 10.6 kOe at 150°C, AIP Adv., 2017, vol. 7, p. 056223.CrossRefGoogle Scholar
  7. 7.
    Nishida, Y., Endo, M., and Sakurada, S., A modeling study of domain wall pinning in Sm2Co17-based magnets, J. Magn. Magn. Mater., 2012, vol. 324, pp. 1948–1953.CrossRefGoogle Scholar
  8. 8.
    Sepehri-Amin, H., Thielsch, J., Fischbacher, J., Ohkubo, T., Schrefl, T., Gutfleisch, O., and Hono, K., Correlation of microchemistry of cell boundary phase and interface structure to the coercivity of Sm(Co0.784Fe0.100Cu0.088Zr0.028)7.19 sintered magnets, Acta Mater., 2017, vol. 126, pp. 1–10.CrossRefGoogle Scholar
  9. 9.
    Sun, W., Zhu, M., Guo, Z., Fang, Y., and Li, W., The coercivity mechanism of sintered Sm(CobalFe0.245Cu0.07Zr0.02)7.8 permanent magnets with different isothermal annealing time, Phys. B (Amsterdam), 2015, vol. 476, pp. 154–157.CrossRefGoogle Scholar
  10. 10.
    Xiong, X.Y., Ohkubo, T., Koyama, T., Ohashi, K., Tawara, Y., and Hono, K., The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe, Acta Mater., 2004, vol. 52, pp. 737–748.CrossRefGoogle Scholar
  11. 11.
    Tian, Y., Liu, Z., Xu, H., Du, J., Zhang, J., Xia, W., and Liu, J.P., In situ observation of domain wall pinning in Sm(Co, Fe, Cu, Zr)z magnet by Lorentz microscopy, IEEE Trans. Magn., 2015, vol. 51, no. 11, p. 7114284.Google Scholar
  12. 12.
    Gutfleisch, O., Müller, K.-H., Khlopkov, K., Wolf,M., Yan, A., Schäfer, R., Gemming, T., and Schultz, L., Evolution of magnetic domain structures and coercivity in high-performance SmCo 2: 17-type permanent magnets, Acta Mater., 2006, vol. 54, pp. 997–1008.Google Scholar
  13. 13.
    Lyakhova, M.B., Semenova, E.M., Pastushenkov, Yu.G., Pastushenkov, A.G., Sinekop, V.I., and Zezyulina, P.A., Magnetic domain structure and magnetic reversal process of (R, Zr)(Co, Cu, Fe)z heterogeneous nanocrystalline alloys, Solid State Phenom., 2011, vols. 168–169, pp. 400–403.Google Scholar
  14. 14.
    Duerrschnabel, M., Yi, M., Uestuener, K., Liesegang, M., Katter, M., Kleebe, H.-J., Xu, B., Gutfleisch, O., and Molina-Luna, L., Atomic structure and domain wall pinning in samarium-cobalt-based permanent magnets, Nat. Commun., 2017, vol. 8, no. 54, pp. 1–7.Google Scholar
  15. 15.
    Suponev, N.P., Grechishkin, R.M., Lyakhova, M.B., and Pushkar, Yu.E., Angular dependence of coercive field in (Sm, Zr)(Co, Cu, Fe)z, J. Magn. Magn. Mater., 1996, vol. 157–158, pp. 376–377.Google Scholar
  16. 16.
    Zhang, Y., Gabay, A.M., and Hadjipanayis, G.C., Observation of the lamellar phase a Zr-free Sm(Co0.45Fe0.15Cu0.40)5, Appl. Phys. Lett., 2005, vol. 87, p. 141910.CrossRefGoogle Scholar
  17. 17.
    Gabay, A.M., Larson, P., Mazin, I.I., and Hadjipanayis, G.C., Magnetic states and structural transformations in Sm(Co, Cu)5 and Sm(Co, Fe, Cu)5 permanent magnets, J. Phys. D: Appl. Phys., 2005, vol. 38, pp. 1337–1341.CrossRefGoogle Scholar
  18. 18.
    Pragnell, W.M., Williams, A.J., and Evans, H.E., The oxidation of SmCo magnets, J. Appl. Phys., 2008, vol. 103, p. 07E127.CrossRefGoogle Scholar
  19. 19.
    Katsikini, M., Pinakidou, F., Paloura, E. C., Gabay, A.M., and Hadjipanayis, G.C., Effect of aging on the nanostructure of SmCo3Cu2 magnets: An EXAFS study, Proc. XXIV Pan-Hellenic Conf. on Solid State Physics and Materials Science, Heraklion, 2008, p. 211.Google Scholar
  20. 20.
    Belov, K.P., Levitin, R.Z., and Nikitin, S.A., Ferroand anti-ferromagnetism of rare earth metals, Usp. Fiz. Nauk, 1964, vol. 82, pp. 449–498.CrossRefGoogle Scholar
  21. 21.
    Horiuchi, Y., Hagiwara, M., Endo, M., Sanada, N., and Sakurada, S., Influence of intermediate-heat treatment on the structure and magnetic properties of ironrich Sm(CoFeCuZr)z sintered magnets, J. Appl. Phys., 2015, vol. 117, art. ID 17C704.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Lukin
    • 1
  • N. B. Kolchugina
    • 2
  • Yu. S. Koshkid’ko
    • 3
  • A. V. Kamynin
    • 1
  • D. Yu. Vasilenko
    • 4
  1. 1.JSC SpetsmagnitMoscowRussia
  2. 2.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  3. 3.Institute of Low Temperature and Structure ResearchPolish Academy of SciencesWroclawPoland
  4. 4.Ural Electomechanical PlantYekaterinburgRussia

Personalised recommendations