Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 5, pp 985–989 | Cite as

Chemical Vapor Deposition of Wear-Resistant Iron-Nickel Coating onto Precision Parts of Hydraulic Systems

  • L. V. Kozyreva
  • V. V. Kozyrev
  • N. N. Chupyatov
New Technologies for Design and Processing of Materials
  • 6 Downloads

Abstract

Wear-resistant iron-nickel coating has been obtained by chemical vapor deposition of nickel tetracarbonyl and iron pentacarbonyl. A procedure of application of wear-resistant iron-nickel coating on precision parts has been developed where at first the surface of the item is coated with an adhesive layer of nickel coating with the thickness up to 10 μm by supplying vapor of nickel tetracarbonyl to the heated surface of the item, and then an adhesive layer of iron-nickel coating is applied by supplying a vapor mixture of nickel tetracarbonyl, iron pentacarbonyl, and carbon monoxide in a volumetric ratio of 1: 6: 15 and their combined thermal decomposition. Coatings with the required physicomechanical properties have been obtained, thus indicating the efficiency of the used approaches, increasing the wear resistance of precision items of hydraulic systems and their service life.

Keywords

chemical vapor deposition wear-resistant iron-nickel coating hardening precision parts of hydraulic systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carr, G.E. and Conde, R.H., Tribology of hard coating alloys deposited by thermal methods: applications to industrial components, Surf. Coat. Technol., 2008, vol. 203, nos. 5–7, pp. 685–690.CrossRefGoogle Scholar
  2. 2.
    Erokhin, M.N. and Chupyatov, N.N., Performance of hydraulic systems using SVD method of organometallic compounds, Vestn. Mosk. Gos. Agroinzh. Univ. im. V.P. Goryachkina, 2013, no. 3, pp. 39–41.Google Scholar
  3. 3.
    Legkaya, D.A. and Solov’eva, N.D., Underpotential deposition of nickel and its influence on properties of electrodeposited coating, Perspekt. Mater., 2017, no. 5, pp. 70–75.Google Scholar
  4. 4.
    Blinkov, I.V., Anikin, V.N., Petrzhik, M.I., Kratokhvil, R.V., Ivanov, A.N., Mikhal’ski, Yu., and Nakonechny, A., Acquisition and properties of wearresistant PVD/CVD-coatings on a hard-alloy tool, Russ. J. Non-Ferrous Met., 2011, vol. 52, no. 1, pp. 109–114.CrossRefGoogle Scholar
  5. 5.
    Panarin, A.V., Pyrolytic chromium carbide coatings: production technology and properties, Aviats. Mater. Tekhnol., 2011, no. 4 (21), pp. 14–18.Google Scholar
  6. 6.
    Korotkov, V.A., Wear resistance of carbon steel with different types of hardening, J. Frict. Wear, 2015, vol. 36, no. 2, pp. 149–152.CrossRefGoogle Scholar
  7. 7.
    Vagin, A.V., Sidorov, M.I., Albagachiev, A.Yu., and Stavrovskii, M.E., Improving the life of artillery systems, Russ. Eng. Res., 2017, vol. 37, no. 3, pp. 211–217.CrossRefGoogle Scholar
  8. 8.
    Vasiliev, V.Y., Morozova, N.B., Basova, T.V., Igumenov, I.K., and Hassan, A., Chemical vapor deposition of IR-based coatings: Chemistry, processes and applications, RSC Adv., 2015, vol. 5, no. 41, pp. 32034–32063.CrossRefGoogle Scholar
  9. 9.
    Lakhotkin, Yu.V., Kuzmin, V.P., Dushik, V.V., and Rybkina, T.V., New low-temperature plating of solid nanocoatings on complex-shape components, Uprochnyayushchie Tekhnol. Pokrytiya, 2013, no. 6 (102), pp. 9–15.Google Scholar
  10. 10.
    Kosyrev, V.V., Petrov, M.Yu., and Kozyreva, L.V., Producing hardfacing composite materials for ecologically safe technologies, Weld. Int., 2016, vol. 30, no. 11, pp. 895–898.CrossRefGoogle Scholar
  11. 11.
    Syrkin, V.G., CVD-metod. Khimicheskaya parofaznaya metallizatsiya (CVD-Method: Chemical Vapor-Phase Metallization), Moscow: Nauka, 2000.Google Scholar
  12. 12.
    Li, W.M., Recent developments of atomic layer deposition processes for metallization, Chem. Vap. Deposition, 2013, vol. 19, nos. 4–6, pp. 82–103.CrossRefGoogle Scholar
  13. 13.
    Pierson, H.O., Handbook of Chemical Vapor Deposition (CVD), Amsterdam: Elsevier, 1999.Google Scholar
  14. 14.
    Kozyrev, V.V., Kozyreva, L.V., Filippova, N.A., and Chupyatov, N.N., RF Patent 2626126, 2017.Google Scholar
  15. 15.
    Bessergenev, V., The use of complex compounds in chemical vapor deposition, J. Phys.: Condens. Matter., 2004, vol. 16, no. 5, pp. S531–S552.Google Scholar
  16. 16.
    Chemical Thermodynamics of Compounds and Complexes of U, Np, Pu, Am, Tc, Se, Ni, and Zr with Selected Organic Ligands, Chemical Thermodynamics Series, vol. 9, Mompean, J., Illemassène, M., and Perrone, J., Eds., Boston: Elsevier, 2005.Google Scholar
  17. 17.
    Zhang, C., Du, Y., Peng, Y., and Zhou, P., Thermodynamic modeling of the C–CO–Mo and C–Mo–Ni ternary systems, J. Phase Equilib. Diffus., 2016, vol. 37, no. 4, pp. 423–437.CrossRefGoogle Scholar
  18. 18.
    Chase, M.W., NIST-JANAF Thermochemical Tables, New York: Am. Chem. Soc., Am. Inst. Phys., 1998.Google Scholar
  19. 19.
    Vasil’eva, E.S., Nasibulin, A.G., Tolochko, O.V., and Kauppinen, E.I., Synthesis of nanoparticles by chemical vapor deposition of iron pentacarbonyl in carbon monoxide environment, Fiz.-Khim. Kinet. Gazov. Din., 2006, no. 4, pp. 303–311.Google Scholar
  20. 20.
    Krisyuk, V., Gleizes, A.N., Aloui, L., Turgambaeva, A., Sarapata, B., Prud’homme, N., Senocq, F., Samélor, D., Zielinska-Lipiec, A., de Caro, D., and Vahlas, C., Chemical vapor deposition of iron, iron carbides and iron nitride films from amidinate precursors, J. Electrochem. Soc., 2010, vol. 157, no. 8, pp. D454–D461.Google Scholar
  21. 21.
    Scott, C.D., Povitsky, A., Dateo, C., Gökçen, T., Willis, P.A., and Smalley, R.E., Iron catalyst chemistry in carbon monoxide modeling a high-pressure nanotube reactor, J. Nanoscience Nanotechnol., 2003, vol. 3, nos. 1–2, pp. 63–73.CrossRefGoogle Scholar
  22. 22.
    Krasnokutski, S.A. and Huisren, F., Reactivity of iron atoms at low temperature, J. Phys. Chem. A, 2014, vol. 118, no. 14, pp. 2612–2617.CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • L. V. Kozyreva
    • 1
  • V. V. Kozyrev
    • 2
  • N. N. Chupyatov
    • 3
  1. 1.Tver State Technical UniversityTverRussia
  2. 2.Tver State Agricultural AcademyTverRussia
  3. 3.PSJC ElektromekhanikaRzhevRussia

Personalised recommendations