Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 5, pp 990–996 | Cite as

Combined Research of Dispersed Precipitates in High-Strength Steel

  • M. L. Fedoseev
  • M. S. Mikhailov
  • N. F. Drozdova
  • S. N. Petrov
  • A. N. Matvienko
Investigation Methods Of Matherial Properties

Abstract

Disperse precipitates in high-strength high-chromium martensite-ferrite steel of 0.15C–12Cr–Ni–Mo–W–V composition after various modes simulating the after-forging annealing were investigated. The investigated metal after holding at 1050°С for 1 h and quenching in oil was heat treated (HT) in two modes: HT 1—the after-forging annealing at 700°С for 6 h to relieve stresses; HT 2—HT 1 with the following isothermal annealing, heating to 1000°С, short holding, cooling to 700°С, and holding for 16 h. On the basis of the combined research, including optical metallography, X-ray phase analysis, transmission electron microscopy, and small-angle X-ray scattering, it was found that the tempered martensite structure with the ferrite phase of less than 1% was formed in the steel after HT 1; and after HT 2, transition from the martensiteferrite to ferrite-pearlite state took place; significant growth of carbides of the (Fe Cr)23C6 type and substructural components (coherent scattering areas, electron density inhomogeneity) was found; and finely dispersed particles of vanadium carbide V2C about 30 nm in size were formed.

Keywords

steel dispersed precipitates carbides heat treatment TEM XRD SAXS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yagodkin, Yu.D. and Dobatkin, S.V., Application of electron microscopy and X-ray diffraction analysis for determination of nanocrystal materials structure elements sizes (review), Zavod. Lab., Diagn. Mater., 2007, vol. 73, no. 1, pp. 38–48.Google Scholar
  2. 2.
    Sommariva, M., Gateshki, M., Gertenbach, J.A., Bolze, J., König, U., Vasile, B.S., and Surdu, V.A., Characterizing nanoparticles with a laboratory diffractometer: From small-angle to total X-ray scattering, Powder Diffr., 2014, vol. 29, pp. S47–S53. doi 10.1017/S0885715614001043CrossRefGoogle Scholar
  3. 3.
    Pauw, B.R., Everything SAXS: Small-angle scattering pattern collection and correction, J. Phys.: Condens. Matter., 2013, vol. 25. 383201. doi 10.1088/0953-8984/25/38/383201Google Scholar
  4. 4.
    Kim, B.H., Hackett, M.J., Park, J., and Hyeon, T., Synthesis, characterization, and application of ultrasmall nanoparticles, Chem. Mater., 2014, vol. 26, no. 1, pp. 59–71. doi 10.1021/cm402225zCrossRefGoogle Scholar
  5. 5.
    Oba, J., Koppoju, S., Ohnuma, M., Murakami, T., Hatano, H., Sasakawa, K., Kitahara, A., and Susuki, J., Quantitative analysis of precipitate in vanadium-microalloyed medium carbon steels using smallangle X-ray and neutron scattering methods, ISIJ Int., 2011, vol. 51, no. 11, pp. 1852–1858.CrossRefGoogle Scholar
  6. 6.
    Lanskaya, K.A., Vysokokhromistye zharoprochnye stali (High-Chromium Heat-Resistant Steels), Moscow: Metallurgiya, 1976.Google Scholar
  7. 7.
    Kheiker, D.M. and Zevin, L.S., Rentgenovskaya difraktometriya (X-ray Diffractometry), Moscow: Fizmatgiz, 1963.Google Scholar
  8. 8.
    Bekrenev, A.N. and Mirkin, L.I., Malouglovaya rentgenografiya deformatsii i razrusheniya materialov (Small Angle X-ray Scattering of Deformation and Fracture of Materials), Moscow: Mosk. Gos. Univ., 1991.Google Scholar
  9. 9.
    Shchurov, A.F., Gracheva, T.A., and Malygin, N.D., Fizika tverdogo tela. Malouglovaya rentgenografiya kristallicheskikh i amorfnykh materialov (Solid State Physics. Small Angle X-ray Scattering of Crystalline and Amorphous Materials), Moscow: Vysshaya Shkola, 2001.Google Scholar
  10. 10.
    Goldstein, J., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L., and Mikhael, J.R., Scanning Electron Microscopy and X-ray Microanalysis, New York: Springer-Verlag, 2003. doi 10.1007/978-1-4615-0215-9CrossRefGoogle Scholar
  11. 11.
    Rybin, V.V., Rubtsov, A.S., and Nesterova, E.V., The method of single reflexes (SR) and its application in electron microscopy analysis of disperse phases, Zavod. Lab., Diagn. Mater., 1982, no. 5, pp. 21–26.Google Scholar
  12. 12.
    Markova, Yu.M., Analysis of the transformations in the bainite-martensitic steel of the Cr–Ni–Mo–V composition under isothermal exposition and continuous cooling, Trudy IV mezhdunarodnoi nauchno-prakticheskoi konferentsii “Innovatsii na transporte i v mashinostroenii” (Proc. IV Int. Sci.-Pract. Conf. “Innovations in Transport and Mechanical Engineering”), St. Petersburg, 2016, pp. 97–100.Google Scholar
  13. 13.
    Frank-Kamenetskii, V.A., Rukovodstvo po rentgenovskomu issledovaniyu mineralov (Manual on X-ray Analysis of Minerals), Leningrad: Nedra, 1975.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. L. Fedoseev
    • 1
  • M. S. Mikhailov
    • 1
  • N. F. Drozdova
    • 1
  • S. N. Petrov
    • 1
  • A. N. Matvienko
    • 2
  1. 1.Central Research Institute of Structural Materials PrometeySt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations