Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 5, pp 794–802 | Cite as

Manufacturing Transparent Conducting Films Based on Directly Exfoliated Graphene Particles via Langmuir–Blodgett Technique

  • E. A. Danilov
  • V. M. Samoilov
  • V. S. Dmitrieva
  • A. V. Nikolaeva
  • D. V. Ponomareva
  • E. I. Timoshchuk
Electronic Engineering Materials

Abstract

Transparent conducting films based on graphene particles are obtained via ultrasonic-assisted liquid-phase exfoliation of natural graphite. For the first time, the Langmuir–Blodgett technique is reported to be utilized for the deposition of transparent conducting thin films based on directly exfoliated graphene on dielectric substrates (glass and lithium niobate). It is shown that centrifugation of graphene suspensions prior to the film deposition enables the formation of conducting coatings with high transparency (higher than 90%). A number of film parameters (sheet conductance, transmission coefficient in the optical domain) are investigated; the achieved level of properties (the sheet resistance of 143 Ω/sq at the optical transmission coefficient of 90% and the weak dependence of absorption on the wavelength) makes these films an attractive material for transparent electrodes in photovoltaic devices, light emitting diodes, and advanced sensor technologies. The samples of graphene-based films deposited on a transparent piezoelectric substrate (lithium niobate) showed themselves as candidates for application as a part of primary transducers for electronic devices and sensing technologies as a possible substitute for ceramic materials based on indium-tin oxide.

Keywords

graphene transparent electrodes exfoliation thin conducting films Langmuir–Blodgett films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    López-Naranjo, E.J., González-Ortiz, L.J., Apátiga, L.M., Rivera-Muñoz, E.M., and Manzano-Ramírez, A., Transparent electrodes: A review of the use of carbon-based nanomaterials, J. Nanomater., 2016, vol. 2016, p. 4928365.CrossRefGoogle Scholar
  2. 2.
    Ferrari, A.C., Bonaccorso, F., Fal’ko, V., et al., Science and technology roadmap for graphene, related twodimensional crystals, and hybrid systems, Nanoscale, 2015, vol. 7, pp. 4598–4810.CrossRefGoogle Scholar
  3. 3.
    Exarhos, G.J. and Zhou, X.D., Discovery-based design of transparent conducting oxide films, Thin Solid Films, 2007, vol. 515, pp. 7025–7052.CrossRefGoogle Scholar
  4. 4.
    Cao, W., Li, J., Chen, H., and Xue, J., Transparent electrodes for organic optoelectronic devices: a review, J. Photon. Energy, 2014, vol. 4, p. 040990.CrossRefGoogle Scholar
  5. 5.
    Kulkarni, G.U., Kiruthika, S., Gupta, R., and Rao, K.D.M., Towards low cost materials and methods for transparent electrodes, Curr. Opin. Chem. Eng., 2015, vol. 8, pp. 60–68.CrossRefGoogle Scholar
  6. 6.
    Luo, M., Liu, Y., Huang, W., Qiao, W., Zhou, Y., Ye, Y., and Chen, L.-S., Towards flexible transparent electrodes based on carbon and metallic materials, Micromachines, 2017, vol. 8, no. 1, p. 12.CrossRefGoogle Scholar
  7. 7.
    Liu, J., Yi, Y., Zhou, Y., and Cai, H., Highly stretchable and flexible graphene/ITO hybrid transparent electrode, Nanoscale Res. Lett., 2016, vol. 11, pp. 1–7.CrossRefGoogle Scholar
  8. 8.
    Kumar, A. and Zhou, C., The race to replace tin-doped indium oxide: Which material will win? ACS Nano, 2010, vol. 4, no. 1, pp. 11–42.CrossRefGoogle Scholar
  9. 9.
    Hecht, D.S., Hu, L., and Irvin, G., Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Adv. Mater., 2011, vol. 23, pp. 1482–1513.CrossRefGoogle Scholar
  10. 10.
    Bright, C.I. Review of transparent conductive oxides (TCO), in 50 Years of Vacuum Coating Technology and the Growth of the Society of Vacuum Coaters, Mattox, D.M. and Mattox, V.H., Eds., Albuquerque: Soc. Vacuum Coaters, 2007, pp. 38–45.Google Scholar
  11. 11.
    Li, H., Wang, N., and Liu, X., Optical and electrical properties of vanadium doped indium oxide thin films, Opt. Express, 2008, vol. 16, no. 1, pp. 194–199.CrossRefGoogle Scholar
  12. 12.
    Ellmer, K., Past achievements and future challenges in the development of optically transparent electrodes, Nat. Photon., 2012, vol. 6, pp. 809–817.CrossRefGoogle Scholar
  13. 13.
    Leem, D.-S., Edwards, A., Faist, M., Nelson, J., Bradley, D.D.C., and de Mello, J.C., Efficient organic solar cells with solution-processed silver nanowire electrodes, Adv. Mater., 2011, vol. 23, pp. 4371–4375.CrossRefGoogle Scholar
  14. 14.
    Xu, Y. and Liu, J., Graphene as transparent electrodes: fabrication and new emerging applications, Small, 2016, vol. 12, no. 11, pp. 1400–1419.CrossRefGoogle Scholar
  15. 15.
    Hasan, T., Scardaci, V., Tan, P.H., Bonaccorso, F., Rozhin, A.G., Sun, Z., and Ferrari, A.C., Nanotube and graphene polymer composites for photonics and optoelectronics, in Molecular-and Nano-Tubes, Hayden, O. and Nielsch, K., Eds., New York: Springer-Verlag, 2011, pp. 279–354. ISBN 978-1-4419-9442-4Google Scholar
  16. 16.
    Cai, W., Zhu, Y., Li, X., Piner, R.D., and Ruoff, R.S., Large area few-layer graphene/graphite films as transparent thin conducting electrodes, Appl. Phys. Lett., 2009, vol. 95, no. 12, p. 123115.CrossRefGoogle Scholar
  17. 17.
    Park, H., Rowehl, J.A., Kim, K.K., Bulovic, V., and Kong, J., Doped graphene electrodes for organic solar cells, Nanotechnology, 2010, vol. 21, no. 50, p. 505204.CrossRefGoogle Scholar
  18. 18.
    Sandana, V.E., Rogers, D.J., Teherani, F.H., Bove, P., and Razeghi, M., Graphene versus oxides for transparent electrode applications, Proc. SPIE, 2013, vol. 8626, p. 862603.CrossRefGoogle Scholar
  19. 19.
    Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colombo, L., and Ruoff, R.S., Transfer of large-area graphene films for high-performance transparent conductive electrodes, Nano Lett., 2009, vol. 9, no. 12, pp. 4359–4363.CrossRefGoogle Scholar
  20. 20.
    Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., and Kong, J., Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett., 2009, vol. 9, no. 1, pp. 30–33.CrossRefGoogle Scholar
  21. 21.
    Chen, Y.-Z., Medina, H., Tsai, H.-W., Wang, Y.-C., Yen, Y.-T., Manikandan, A., and Chueh, Y.-L., Low temperature growth of graphene on glass by carbonenclosed chemical vapor deposition process and its application as transparent electrode, Chem. Mater., 2015, vol. 27, no. 5, pp. 1646–1655.CrossRefGoogle Scholar
  22. 22.
    Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., and Ruoff, R.S., Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, 2009, vol. 324, pp. 1312–1314.CrossRefGoogle Scholar
  23. 23.
    Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.-J., Kim, K.S., Ozyilmaz, B., Ahn, J.-H., Hong, B.H., and Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nat. Nanotechnol., 2010, vol. 5, pp. 574–578.CrossRefGoogle Scholar
  24. 24.
    Celestin, M., Krishnan, S., Bhansali, S., Stefanakos, E., and Goswami, D.Y., A review of selfassembled monolayers as potential THz frequency tunnel diodes, Nano Res., 2014, vol. 7, no. 5, pp. 589–625.CrossRefGoogle Scholar
  25. 25.
    Chen, J., Guo, Y., Huang, L., Xue, Y., Geng, D., Liu, H., Wu, B., Yu, G., Hu, W., Liu, Y., and Zhu, D., Controllable fabrication of ultrathin free-standing graphene films, Philos. Trans. R. Soc., A, 2014, vol. 372, p. 20130017.CrossRefGoogle Scholar
  26. 26.
    Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K.A., Celik, O., Mastrogiovanni, D., Granozzi, G., Garfunkel, E., and Chhowalla, M., Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films, Adv. Funct. Mater., 2009, vol. 19, pp. 2577–2583.CrossRefGoogle Scholar
  27. 27.
    Liu, Y., Gao, L., Sun, J., Wang, Y., and Zhang, J., Stable Nafion-functionalized graphene dispersions for transparent conducting films, Nanotechnology, 2009, vol. 20, p. 465605.CrossRefGoogle Scholar
  28. 28.
    Wu, J., Agrawal, M., Becerril, H.A., Bao, Z., Liu, Z., Chen, Y., and Peumans, P., Organic light-emitting diodes on solution-processed graphene transparent electrodes, ACS Nano, 2010, vol. 4, no. 1, pp. 43–48.CrossRefGoogle Scholar
  29. 29.
    Su, C.-Y., Lu, A.-Y., Xu, Y., Chen, F.-R., Khlobystov, A.N., and Li, L.-J., High-quality thin graphene films from fast electrochemical exfoliation, ACS Nano, 2011, vol. 5, no. 3, pp. 2332–2339.CrossRefGoogle Scholar
  30. 30.
    De, S., King, P.J., Lotya, M., O’Neill, A., Doherty, E.M., Hernandez, Y., Duesberg, G.S., and Coleman, J.N., Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free grapheme dispersions, Small, 2010, vol. 6, no. 3, pp. 458–464.CrossRefGoogle Scholar
  31. 31.
    Eda, G., Fanchini, G., and Chhowalla, M., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat. Nanotechnol., 2008, vol. 3, pp. 270–274.CrossRefGoogle Scholar
  32. 32.
    Zasadzinski, J.A., Viswanathan, R., Madsen, L., Garnaes, J., and Schwartz, D.K., Langmuir–Blodgett films, Science, 1994, vol. 263, no. 5154, pp. 1726–1733.CrossRefGoogle Scholar
  33. 33.
    Oliveira, O.N., Jr., Langmuir–Blodgett films-properties and possible applications, Braz. J. Phys., 1992, vol. 22, no. 2, pp. 60–69.Google Scholar
  34. 34.
    Whitesides, G.M., Kriebel, J.K., and Love, J.C., Molecular engineering of surfaces using self-assembled monolayers, Sci. Progr., 2005, vol. 88, no. 1, pp. 17–48.CrossRefGoogle Scholar
  35. 35.
    Zheng, L., Wucher, A., and Winograd, N., Chemically alternating Langmuir–Blodgett thin films as a model for molecular depth profiling by mass spectrometry, J. Am. Soc. Mass Spectrom., 2008, vol. 19, pp. 96–102.CrossRefGoogle Scholar
  36. 36.
    Bjørnholm, T., Hassenkam, T., and Reitzel, N., Supramolecular organization of highly conducting organic thin films by the Langmuir–Blodgett technique, J. Mater. Chem., 1999, vol. 9, pp. 1975–1990.CrossRefGoogle Scholar
  37. 37.
    Cea, P., Ballesteros, L.M., and Martín, S., Nanofabrication techniques of highly organized monolayers sandwiched between two electrodes for molecular electronics, Nanofabrication, 2014, vol. 1, pp. 96–117.CrossRefGoogle Scholar
  38. 38.
    Malik, S. and Tripathi, C.C., Thin film deposition by Langmuir–Blodgett technique for gas sensing applications, J. Surf. Eng. Mater. Adv. Technol., 2013, vol. 3, pp. 235–241.Google Scholar
  39. 39.
    Tao, A.R., Huang, J., and Yang, P., Langmuir–Blodgettry of nanocrystals and nanowires, Acc. Chem. Res., 2008, vol. 41, no. 12, pp. 1662–1673.CrossRefGoogle Scholar
  40. 40.
    Sukhodolov, N.G., Ivanov, N.S., and Podol’skaya, E.P., New materials obtained by Langmuir–Blodgett technique and their application in nanotechnologies, Nauch. Priborostr., 2013, vol. 23, no. 1, pp. 86–105.Google Scholar
  41. 41.
    Ciesielski, A. and Samori, P., Graphene via sonication assisted liquid-phase exfoliation. Review article, Chem. Soc. Rev., 2014, vol. 43, pp. 381–398.CrossRefGoogle Scholar
  42. 42.
    Coleman, J.N., Liquid-phase exfoliation of nanotubes and graphene, Adv. Funct. Mater., 2009, vol. 19, no. 23, pp. 3680–3695.CrossRefGoogle Scholar
  43. 43.
    Lotya, M., Hernandez, Y., King, P.J., Smith, R.J., Nicolosi, V., Karlsson, L.S., Blighe, F.M., De, S., Wang, Z., McGovern, I.T., Duesberg, G.S., and Coleman, J.N., Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions, J. Am. Chem. Soc., 2009, vol. 131, no. 10, pp. 3611–3620.CrossRefGoogle Scholar
  44. 44.
    De, S. and Coleman, J.N., Are there fundamental limitations on the sheet resistance and transmittance of thin grapheme films? ACS Nano, 2010, vol. 4, no. 5, pp. 2713–2720.CrossRefGoogle Scholar
  45. 45.
    Samoilov, V.M., Danilov, E.A., Nikolaeva, A.V., Yerpuleva, G.A., Trofimova, N.N., Abramchuk, S.S., and Ponkratov, K.V., Formation of graphene aqueous suspensions using fluorinated surfactant-assisted ultrasonication of pristine graphite, Carbon, 2015, vol. 84, pp. 38–46.CrossRefGoogle Scholar
  46. 46.
    Nikolaeva, A.V., Samoilov, V.M., Danilov, E.A., Mayakova, D.V., Trofimova, N.N., and Abramchuk, S.S., Efficiency of surfactants and organic additives in preparation of aqueous suspensions of graphene from natural graphite affected by ultrasound, Perspekt. Mater., 2015, vol. 2, pp. 44–56.Google Scholar
  47. 47.
    Samoilov, V.M., Nikolaeva, A.V., Timoshchuk, E.I., Rochev V.Ya., Lyapunov A.Ya., Balaklienko, Yu.M., and Petrov, A.B., The use of laser diffraction to determine the particle size of finely dispersed powders of artificial graphite, Prikl. Anal. Khimi., 2012, vol. 3, no. 2, pp. 28–35.Google Scholar
  48. 48.
    Maragó, O.M., Bonaccorso, F., Saija, R., Privitera, G., Gucciardi, P.G., Iati, M.A., Calogero, G., Jones, P.H., Borghese, F., Denti, P., Nicolosi, V., and Ferrari, A.C., Brownian motion of graphene, ACS Nano, 2010, vol. 4, no. 12, pp. 7515–7523.CrossRefGoogle Scholar
  49. 49.
    Zhu, Y., James, D.K., and Tour, J.M., New routes to graphene, graphene oxide and their related applications, Adv. Mater., 2012, vol. 24, no. 36, pp. 4924–4955.CrossRefGoogle Scholar
  50. 50.
    Wang, J., Liang, M., Fang, Y., Qiu, T., Zhang, J., and Zhi, L., Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens, Adv. Mater., 2012, vol. 24, no. 21, pp. 2874–2878.CrossRefGoogle Scholar
  51. 51.
    Girard-Egrot, A.P. and Blum, L.J., Langmuir–Blodgett technique for synthesis of biomimetic lipid membranes, Fund. Biomed. Technol., 2007, vol. 1, pp. 23–74.CrossRefGoogle Scholar
  52. 52.
    Cote, L.J., Kim, J., Tung, V.C., Luo, J., Kim, F., and Huang, J., Graphene oxide as surfactant sheets, Pure Appl. Chem., 2011, vol. 83, no. 1, pp. 95–110.CrossRefGoogle Scholar
  53. 53.
    Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E., and Dai, H., Highly conducting graphene sheets and Langmuir–Blodgett films, Nature Nanotechnol., 2008, vol. 3, pp. 538–542.CrossRefGoogle Scholar
  54. 54.
    Gengler, R.Y.N., Veligura, A., Enotiadis, A., Diamanti, E.K., Gournis, D., Jozsa, C., van Wees, B.J., and Rudolf, P., Large-yield preparation of high-electronic quality graphene by a Langmuir–Schaefer approach, Small, 2010, vol. 6, no. 1, pp. 35–39.CrossRefGoogle Scholar
  55. 55.
    Wajid, A.S., Das, S., Irin, F., Ahmed, H.S.T., Shelburne, J.L., Parviz, D., Fullerton, R.J., Jankowski, A.F., Hedden, R.C., and Green, M.J., Polymer-stabilized graphene dispersions at high concentrations in organic solvents for composite production, Carbon, 2012, vol. 50, no. 2, pp. 526–534.CrossRefGoogle Scholar
  56. 56.
    Zheng, Q., Shi, L., and Yang, J., Langmuir–Blodgett assembly of ultra-large graphene oxide films for transparent electrodes, Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 2504–2511.CrossRefGoogle Scholar
  57. 57.
    Zheng, Q., Ip, W.H., Lin, X., Yousefi, N., Yeung, K.K., Li, Z., and Kim, J.-K., Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir–Blodgett assembly, ACS Nano, 2011, vol. 5, no. 7, pp. 6039–6051.CrossRefGoogle Scholar
  58. 58.
    Kuzmenko, A.B., van Heumen, E., Carbone, F., and van der Marel, D., Universal optical conductance of graphite, Phys. Rev. Lett., 2008, vol. 100, p. 117401.CrossRefGoogle Scholar
  59. 59.
    Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., and Geim, A.K., Fine structure constant defines visual transparency of graphene, Science, 2008, vol. 320, p. 1308.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. A. Danilov
    • 1
  • V. M. Samoilov
    • 1
  • V. S. Dmitrieva
    • 1
    • 2
  • A. V. Nikolaeva
    • 1
  • D. V. Ponomareva
    • 1
  • E. I. Timoshchuk
    • 1
  1. 1.AO State Research Institute for Graphite-Based Construction Materials “NIIgrafit”MoscowRussia
  2. 2.D. Mendeleev University of Chemical Technology of RussiaMoscowRussia

Personalised recommendations