Advertisement

Inorganic Materials: Applied Research

, Volume 9, Issue 5, pp 965–972 | Cite as

Thermal Stability of Structure and Properties of the Surface Layer of Instrumental Steel Alloyed with Zirconium and Silicon Atoms under the Action of Compression Plasma Flows

  • N. N. Cherenda
  • V. V. Uglov
  • S. V. Gusakova
  • V. M. Astashynski
  • A. M. Kuzmitski
New Technologies for Design and Processing of Materials

Abstract

The phase and elemental composition and microhardness of instrumental steel U9 with zirconium and silicon coatings subjected to compression plasma flows and air thermal annealing are investigated. It is found that plasma impact leads to the formation of a surface layer with the thickness of up to ~8.5 μm alloyed with zirconium and silicon atoms and containing Fe2Zr intermetallic. Formation on the surface of the oxide γ-ZrO2 and carbonitride Zr(C, N) as a result of interaction with the residual atmosphere of the vacuum chamber is found. Change in the phase composition and dispersion of the structure leads to a twofold increase in microhardness. The alloyed layer retains the stability of the structure and phase composition (excluding polymorphic transition in ZrO2) up to 400°C. Annealing at 600°C leads to the internal oxidation accompanied by formation of a surface iron oxide scale and penetration of the oxygen atoms to the whole depth. The increase in the annealing temperature leads to the decrease in microhardness throughout the alloyed layer.

Keywords

steel compression plasma flows phase composition corrosion resistance microhardness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boiko, V.I., Valyaev, A.N., and Pogrebnyak, A.D., Metal modification by high-power pulsed particle beams, Phys.-Usp., 1999, vol. 42, pp. 1139–1166.CrossRefGoogle Scholar
  2. 2.
    Materials Surface Processing by Directed Energy Techniques, Pauleau, Y., Ed., Amsterdam: Elsevier, 2006.Google Scholar
  3. 3.
    Boiko, V.I., Skvortsov, V.A., Fortov, V.E., and Shamanin, I.V., Vzaimodeistvie impul’snih puchkov zaryazhennykh chastits s veshchestvom (Interaction of Pulsed Beams of Charged Particles with a Substance), Moscow: Fizmatlit, 2003.Google Scholar
  4. 4.
    Ivanov, L.I., Pimenov, V.N., and Gribkov, V.A., Interaction of powerful pulsed energy flows with materials, Fiz. Khim. Obrab. Mater., 2009, no. 1, pp. 23–37.Google Scholar
  5. 5.
    Gribkov, V.A., Demin, A.S., Demina, E.V., Dubrovsky, A.V., Karpinski, L., Maslyaev, S.A., Pimenov, V.N., Padukh, M., and Sholz, M., Physical processes of the interaction of ion and plasma streams with a target surface in a dense plasma focus device, Plasma Phys. Rep., 2012, vol. 38, no. 13, pp. 1082–1089.CrossRefGoogle Scholar
  6. 6.
    Grishunin, V.A., Gromov, V.E., Ivanov, Yu.F., and Denisova, Yu.A., Elektronno-puchkovaya modifikatsiya struktury i svoistv stali (Electron Beam Modification of Structure and Properties of Steel), Novokuznetsk: Poligrafist, 2012.Google Scholar
  7. 7.
    Uglov, V.V., Cherenda, N.N., Anishchik, V.M., Astashinskii, V.M., and Kvasov, N.T., Modifikatsiya materialov kompressionnymi plazmennymi potokami (Modification of Materials by Compression Plasma Flows), Minsk: Bel. Gos. Univ., 2013.Google Scholar
  8. 8.
    Singh Raman, R.K. and Gupta, R.K., Oxidation resistance of nanocrystalline vis-a-vis microcrystalline Fe–Cr alloys, Corros. Sci., 2009, vol. 51, pp. 316–321.CrossRefGoogle Scholar
  9. 9.
    Tong, H.Y., Shi, F.G., and Lavemia, E.J., Enhanced oxidation resistance of nanocrystalline FeBSi materials, Scr. Metall. Mater., 1995, vol. 32, no. 4, pp. 511–516.CrossRefGoogle Scholar
  10. 10.
    Lyakishev, N.P., Diagammy sostoyaniya dvoinykh metallicheskikh sistem: spravochnik (Phase Diagrams of Binary Metal Systems: Handbook), Moscow: Mashinostroenie, 1997.Google Scholar
  11. 11.
    Shi, X.H., Chen, Y.Z., Ma, X.Y., Wang, H.T., and Liu, F., Microstructural evolution of nanocrystalline Fe–Zr alloys upon annealing treatment, Mater. Charact., 2015, vol. 103, pp. 58–64.CrossRefGoogle Scholar
  12. 12.
    Huntz, A.M., Bague, V., Beauplé, G., Haut, C., Sévérac, C., Lecour, P., Longaygue, X., and Ropital, F., Effect of silicon on the oxidation resistance of 9% Cr steels, Appl. Surf. Sci., 2003, vol. 207, pp. 255–275.CrossRefGoogle Scholar
  13. 13.
    Cho, I., Park, K., Lee, S., Nersisyan, H., Kim, Y., and Lee, J., Rapid and cost-effective method for synthesizing zirconium silicides, Chem. Eng. J., 2010, vol. 165, pp. 728–734.CrossRefGoogle Scholar
  14. 14.
    Liu, W., Liang, J., Zhou, X., and Long, X., Formation of zirconium silicide between silicon substrate and zirconium films, Mater. Lett., 2014, vol. 122, pp. 220–222.CrossRefGoogle Scholar
  15. 15.
    Astashynski, V.M., Leyvi, A.Ya., Talala, K.A., Uglov, V.V., Cherenda, N.N., and Yalovets, A.P., Change in the relief of a target surface treated by compression plasma flows, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2013, vol. 7, no. 5, pp. 1005–1012.CrossRefGoogle Scholar
  16. 16.
    Cherenda, N.N., Laskovnev, A.P., Basalai, A.V., Uglov, V.V., Astashynski, V.M., and Kuzmitski, A.M., Erosion of materials under the effect of compression plasma flows, Inorg. Mater.: Appl. Res., 2015, vol. 6, no. 2, pp. 114–120.CrossRefGoogle Scholar
  17. 17.
    Cherenda, N.N., Shimanskii, V.I., Uglov, V.V., Astashinskii, V.M., and Ukhov, V.A., Nitriding of steel and titanium surface layers under the action of compression plasma flows, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2012, vol. 6, no. 2, pp. 319–325.CrossRefGoogle Scholar
  18. 18.
    Birks, N., Meier, G.H., and Pettit, F.S., Introduction to the High Temperature Oxidation of Metals, Cambridge: Cambridge Univ. Press, 2006, 2nd ed.CrossRefGoogle Scholar
  19. 19.
    Huber, E.J., Head, E.L., and Holley, C.E., The heats of formation of zirconium diboride and dioxide, J. Phys. Chem., 1964, vol. 68, pp. 3040–3042.CrossRefGoogle Scholar
  20. 20.
    Chipman, J., The free energy of silica, J. Am. Chem. Soc., 1961, vol. 83, pp. 1762–1763.CrossRefGoogle Scholar
  21. 21.
    Blumenthal, R.N. and Whitmore, D.H., Electrochemical measurements of elevated-temperature thermodynamic properties of certain iron and manganese oxide mixtures, J. Am. Ceram. Soc., 1961, vol. 44, pp. 508–512.CrossRefGoogle Scholar
  22. 22.
    Charelle, Q.G. and Flengas, S.N., Thermodynamic properties of the oxides of Fe, Ni, Pb, Cu, and Mn by EMF measurements, J. Electrochem. Soc., 1968, vol. 115, pp. 796–804.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. N. Cherenda
    • 1
    • 2
  • V. V. Uglov
    • 1
    • 2
  • S. V. Gusakova
    • 1
  • V. M. Astashynski
    • 3
  • A. M. Kuzmitski
    • 3
  1. 1.Belarusian State UniversityMinskBelarus
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.Lykov Heat and Mass Transfer InstituteNational Academy of Science of BelarusMinskBelarus

Personalised recommendations