Inorganic Materials: Applied Research

, Volume 9, Issue 3, pp 530–534 | Cite as

Formation of Axially Aligned Polydisperse Nanocarbon Structures via Chemical Vapor Deposition from Cyclohexane with Ferrocene

  • A. V. Makunin
  • N. G. Chechenin
  • E. A. Vorobyeva
  • D. A. Pankratov
New Methods of Treatment and Production of Materials with Required Properties


Axial polydisperse carbon microstructures composed of vertically aligned arrays of multiwalled carbon nanotubes (MWCNTs) are synthesized via chemical vapor deposition (CVD) of cyclohexane with ferrocene onto a single-crystal silicon substrate. Their structural peculiarities are examined via scanning electron microscopy on a Tescan Lyra3 FEG system, atomic force microscopy on an Ntegra Spectra NT-MDT probe microscopy, by Raman spectroscopy. The abilities to purify synthesized carbon structures from amorphous carbon through oxidation with atomic oxygen and ozone are studied in order to achieve significant enlargement of specific surface area of nanotubes. The routes of application of polydisperse structures as catalyst supports, solid electrolytes, and chemical sensor supports, as well as absorption techniques of gas and liquid storage, are proposed.


carbon nanotubes aligned arrays synthesis substrate silicon electron microscopy probe microscopy Raman scattering specific surface area phase support 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Makunin, A.V., Chechenin, N.G., Serdyukov, A.A., Bachurin, K.E., and Vorob’eva, E.A., Technological characteristics of the processes of carbon nanostructure production by the methods of plasma-arc and gaspyrolytic deposition, Inorg. Mater.: Appl. Res., 2012, vol. 3, no. 3, pp. 197–200.CrossRefGoogle Scholar
  2. 2.
    Makunin, A.V., Bukunov, K.A., Vorobyeva, E.A., Pankratov, D.A., Petrov, D.V., and Chechenin, N.G., Variation of composition and structure over the height in arrays of vertically aligned CNT, NANO-2014, International Conference, Moscow, 2014, no. 01.116. Google Scholar
  3. 3.
    Chechenin, N.G., Bachurin, K.E., Makunin, A.V., Vorobieva, E.A., and Chernykh, P.N., Catalyst structure influence on carbon nanotubes growth by pyrolytic gas deposition, NANOSMAT-2011, Krakow, 2011.Google Scholar
  4. 4.
    Novikov, L.S., Voronina, E.N., Chernik, V.N., Chechenin, N.G., Makunin, A.V., and Vorobieva, E.A., Erosion of carbon nanotube-based polymer nanocomposites exposed to oxygen plasma, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2016, vol. 10, no. 3, pp. 617–622.CrossRefGoogle Scholar
  5. 5.
    Cataldo, F., A study on the action of ozone on multiwall carbon nanotubes, Fullerenes Nanotubes and Carbon Nanostructures, 2008, vol. 16, no. 1, pp. 1–17.CrossRefGoogle Scholar
  6. 6.
    Dyachkova, T.P., Melezhik, A.V., Gorsky, S.Yu., et al., Some aspects of functionalization and modification of carbon nanomaterials, Nanosyst.: Phys., Chem., Math., 2013, vol. 4, no. 5, pp. 605–621.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Makunin
    • 1
  • N. G. Chechenin
    • 1
  • E. A. Vorobyeva
    • 1
  • D. A. Pankratov
    • 2
  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  2. 2.Faculty of ChemistryMoscow State UniversityMoscowRussia

Personalised recommendations