Advertisement

Inorganic Materials: Applied Research

, Volume 7, Issue 2, pp 240–243 | Cite as

3D printing of mineral-polymer structures based on calcium phosphate and polysaccharides for tissue engineering

  • A. Yu. Fedotov
  • A. A. Egorov
  • Yu. V. Zobkov
  • A. V. Mironov
  • V. K. Popov
  • S. M. Barinov
  • V. S. Komlev
Materials for Ensuring Human Life Activity and Environment Protection
  • 81 Downloads

Abstract

The principle of inkjet printing of three-dimensional structures with the given architecture on the basis of composite materials biopolymers/calcium phosphate compounds is implemented. Formation of the calcium phosphate phases takes place in the process of printing of matrix structures by the biopolymer suspensions in situ. The developed approach may be used for manufacturing personalized composite implants, which will make it possible to obtain higher qualitative values of the biological properties of materials, bringing them close to native bone tissue.

Keywords

3D printing calcium phosphate biopolymers chitosan alginate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergmann, C., Lindner, M., Zhang, W., Koczur, K., Kirsten, A., Telle, R., and Fischer, H., 3D printing of bone substitute implants using calcium phosphate and bioactive glasses, J. Eur. Ceram. Soc., 2010, vol. 30, no. 12, pp. 2563–2567.CrossRefGoogle Scholar
  2. 2.
    Popov, V.K., Komlev, V.S., and Chichkov, B.N., Calcium phosphate blossom for bone tissue engineering, Mater. Today, 2014, vol. 2, pp. 96–97.CrossRefGoogle Scholar
  3. 3.
    Stoppato, M., Vahabzadeh, S., and Bandyopadhyay, A., Bone tissue engineering using 3D printing, Bioactive and Compat. Polym., 2013, vol. 28, pp. 16–32.CrossRefGoogle Scholar
  4. 4.
    Pawar, S.N. and Edgar, K.J., Alginate derivatization: A review of chemistry, properties and applications, Biomaterials, 2012, vol. 33, pp. 3279–3305.CrossRefGoogle Scholar
  5. 5.
    Ong, S.Y., Wu, J., Moochhala, S.M., Tan, M.H., and Lu, J., Development of a chitosan-based wound dressing with improved hemostatic and antimicrobial properties, Biomaterials, 2008, vol. 29, pp. 4323–4332.CrossRefGoogle Scholar
  6. 6.
    Barinov, S.M. and Komlev, V.S., Biokeramika na osnove fosfatov kaltsiya (Bioceramics Based on Calcium Phosphates), Moscow: Nauka, 2005.Google Scholar
  7. 7.
    Vikhoreva, G.A. and Tyukova, I.S., Solubility and properties of chitosan solutions, in Chitosan, Skryabina, K.G., Mikhaylova, S.N., and Varlamova, V.P., Eds., Moscow: Tsentr Bioinzheneriya Ross. Akad. Nauk, 2013.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. Yu. Fedotov
    • 1
  • A. A. Egorov
    • 1
  • Yu. V. Zobkov
    • 1
  • A. V. Mironov
    • 2
  • V. K. Popov
    • 2
  • S. M. Barinov
    • 2
  • V. S. Komlev
    • 1
    • 2
  1. 1.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia
  2. 2.Institute of Laser and Information TechnologyRussian Academy of SciencesMoscowRussia

Personalised recommendations