Inorganic Materials: Applied Research

, Volume 4, Issue 2, pp 146–154 | Cite as

Features of the modification of microstructure and properties for copper-doped titanium nitride coatings

  • S. V. Ovchinnikov
  • A. D. Korotaev
  • V. Yu. Moshkov
  • S. V. Rabotkin
Materials for General Purpose


Features of a defective microstructure and the mechanical properties of titanium nitride coatings having different copper content are investigated by means of transmission electron microscopy, X-ray structural analysis, microhardness measurement, and scratch tests. It is shown that, under a relatively low deposition temperature and ion-induced surface activation during the growth of a TiN-Cu coating, a highly defective single-phase crystalline state of titanium nitride is formed at a copper concentration of up to 12 at %. The noted state is characterized by a scale hierarchy of the lattice fragmentation from sizes of ∼10–15 to 100 nm, high bending-torsion of the crystal lattice (tens of degrees per micron), and a level of local internal stresses from ∼E/40 to ∼E/120 (E is the modulus of elasticity). The revealed high gradients, including those of a dipole character, for the bending-torsion on characteristic scales up to some tens of nanometers can be described within the framework of a model for the continuous distribution of dislocation-disclination ensembles. The effect of the copper content on an increase in the degree of dispersion of the subgrained structure, a decrease in the local bending-torsion of the crystal lattice within subgrains, the level of local internal stresses, and variation of the hardness and strength in scratch tests is revealed.


magnetron deposition titanium nitride effect of copper alloying transmission electron microscopy dislocation-disclination ensembles microhardness scratch tests 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Musil, J., Zeman, P., Hruby, H., and Mayrhofer, P.H., ZrN/Cu nanocomposite film-a novel superhard material, Surf. Coat. Technol., 1999, vol. 120–121, pp. 179–183.CrossRefGoogle Scholar
  2. 2.
    Zeman, P., Cerstvy, R., Mayrhofer, P.H., Mitterer, C., and Musil, J., Structure and properties of hard and superhard Zr-Cu-N nanocomposite coatings, Mater. Sci. Eng., A 2000, vol. 289, pp. 189–197.CrossRefGoogle Scholar
  3. 3.
    Musil, J. and Polakova, H., Hard nanocomposite Zr-Y-N coatings, correlation between hardness and structure, Surf. Coat. Technol., 2000, vol. 127, pp. 99–106.CrossRefGoogle Scholar
  4. 4.
    Musil, J., Physical and mechanical properties of hard nanocomposite films prepared by reactive magnetron sputtering, In Nanostructured Coatings, Cavaleiro, A. and De Hosson, J.Th.M., Eds., New York: Springer, 2006.Google Scholar
  5. 5.
    Karvankova, P., Männling, H.-D., Eggs, C., and Veprek, S., Thermal stability of ZrN-Ni and CrN-Ni superhard nanocomposite coatings, Surf. Coat. Technol., 2001, vol. 146–147, pp. 280–285.CrossRefGoogle Scholar
  6. 6.
    Hultman, L. and Mitterer, C., Thermal stability of advanced nanoctructured wear-resistant coatings, In Nanostructured Coatings, Cavaleiro, A. and De Hosson, J.Th.M., Eds., New York: Springer, 2006.Google Scholar
  7. 7.
    Korotaev, A.D., Tyumentsev, A.N., and Sukhovarov, V.F., Dispersnoe uprochnenie tugoplavkikh metallov (Disperse Hardening of Refractory Metals), Novosibirsk: Nauka, 1989.Google Scholar
  8. 8.
    Tyumentsev, A.N., Korotaev, A.D., Pinzhin, Yu.P., Safarov, A.F., and Gonchikov, V.Ch., Peculiarities of microstructure in submicrocrystals of titanium nitride, Izv. Vyssh. Uchebn. Zaved., Fiz., 1998, no. 7, pp. 3–12.Google Scholar
  9. 9.
    Tyumentsev, A.N., Korotaev, A.D., Pinzhin, Yu.P., Ditenberg, I.A., and Litovchenko, I.Yu., Evolution of microstructure and mechanisms of formation of submicro- and nanocrystallic states at plastic deformation of metallic alloys, in “Sintez i svoistva nanokristallicheskikh i substrukturnykh materialov” (Synthesis and Properties of Nanocrystal and Substructutal Materials), Korotaev, A.D., Ed., Tomsk: Tomsk. Gos. Univ., 2007.Google Scholar
  10. 10.
    Veprek, S. and Veprek-Heijman, M.G.J., Concept for the design of superhard nanocomposite with high thermal stability: their preparation, properties and industrial application, In Nanostructured Coatings, Cavaleiro, A. and De Hosson, J.Th.M., Eds., New York: Springer, 2006.Google Scholar
  11. 11.
    Li, Z.G., Miyake, S., Kumagai, M., Satio, H., and Muramatsu, Y., Hard nanocomposite Ti-Cu-N films prepared by DC reactive magnetron Co-sputtering, Surf. Coat. Technol., 2004, vol. 183, pp. 62–68.CrossRefGoogle Scholar
  12. 12.
    Myung, H.S., Han, J.G., and Boo, J.H., A Study on the synthesis and formation behavior of nanostructured TiN films by copper doping, Surf. Coat. Technol., 2004, vol. 177–178, pp. 404–408.CrossRefGoogle Scholar
  13. 13.
    Andreasen, K.P., Jensen, T., Petersen, J.H., Chevallier, J., Bottinger, J., and Schell, N., The Structure and the corresponding mechanical properties of magnetron sputtered TiN-Cu nanocomposites, Surf. Coat. Technol., 2004, vol. 182, pp. 268–275.CrossRefGoogle Scholar
  14. 14.
    Patsalas, P., Abadias, G., Matenoglou, G.M., Koutsokeras, L.E., and Lekka, Ch.E., Electronic and crystal structure and bonding in Ti-based ternary solid solution nitrides and Ti-Cu-N nanocomposite films, Surf. Coat. Technol., 2010, vol. 205, pp. 1324–1330.CrossRefGoogle Scholar
  15. 15.
    Pinakidou, F., Paloura, E.C., Matenoglou, G.M., and Patsalas, P., Nanostructural characterization of TiN-Cu films using EXAFS spectroscopy, Surf. Coat. Technol., 2010, vol. 204, pp. 1933–1936.CrossRefGoogle Scholar
  16. 16.
    He, J.L., Setsuhara, Y., Shimidzu, I., and Miyke, S., Structure refinement and hardness enhancement of titanium nitride films by addition of copper, Surf. Coat. Technol., 2001, vol. 137, pp. 38–42.CrossRefGoogle Scholar
  17. 17.
    Goldshmidt, H.J., Interstitial Alloys. Iss. 1, Plenum, 1967; Moscow: Mir, 1971.Google Scholar
  18. 18.
    Tyumentsev, A.N., Korotaev, A.D., and Pinzhin, Yu.P., High-defect structural states, local internal stress fields and cooperative mechanisms of interlevel deformation and reorientation of crystals in nanostructured metal materials, Fiz. Mezomekh., 2004, vol. 7, no. 4, pp. 35–53.Google Scholar
  19. 19.
    Hultman, L., Thermal stability of nitride thin films, Vacuum, 2000, vol. 57, pp. 1–30.CrossRefGoogle Scholar
  20. 20.
    Ovchinnikov, S.V., Pinzhin, Yu.P., Korotaev, A.D., Moshkov, V.Yu., and Tyumentsev, A.N., Peculiarities of structured state of superhard nanocrystallic coatings of Ti-Si-V-N system, Izv. Vuzov. Fizika, 2009, vol. 52, no. 9, pp. 35–40.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. V. Ovchinnikov
    • 1
  • A. D. Korotaev
    • 2
  • V. Yu. Moshkov
    • 1
  • S. V. Rabotkin
    • 3
  1. 1.Institute of Strength Physics and Materials Science, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Siberian Physical-Technical Institute at Tomsk State UniversityTomskRussia
  3. 3.Institute of High Current Electronics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations