Russian Journal of Biological Invasions

, Volume 9, Issue 2, pp 184–194 | Cite as

Formation of Artificial Communities for the Ballast Water Management Systems Testing in Accordance with Requirements of International Maritime Organization

  • V. A. SilkinEmail author
  • L. A. Pautova
  • A. V. Fedorov
  • E. I. Shitikov
  • V. V. Drozdov
  • T. A. Lukasheva
  • D. A. Zasko


The International Maritime Organization (IMO) in the convention adopted in 2004 imposes stringent requirements on the quality of seawater used in the testing of ballast water management systems (BWMS). They concern both the abundance of plankton organisms of two size groups, 10–50 μm and more than 50 μm, and the taxonomic composition (at least five species of three taxonomic types). Marine phytoplankton has a wide variety of sizes and morphological forms of cells, which makes it difficult to apply the imperative size adopted by the IMO. It is proposed to formalize the size criterion by calculating an equivalent spherical diameter. The real test of the BWMS in 2017 set the task of assessing the compliance of natural water with these quality standards. According to the results of annual monitoring in the northeastern part of the Black Sea, it has been shown that the species diversity of phytoplankton in the size group of 10–50 μm always corresponds to the necessary requirements, but its abundance is two orders of magnitude lower than required. In this case, the simultaneous presence of representatives of three different systematic groups in the initial water is not always observed. This poses the task of modifying the hydrobiological parameters of ballast water by the addition of cultivated species and the formation of a new community with predetermined properties. In this work, we used an intense culture of green algae, which made it possible to increase the abundance of cells to the level corresponding to IMO requirements and also to add a representative of another taxonomic group. Taxonomic diversity in the size group above 50 μm is sufficient and is provided by species diversity of zooplankton; however, the contribution of these organisms to the total population is not large (no more than 3%). The necessary abundance of representatives of this size group was ensured by the cultivation of large dinoflagellates.


invasions phytoplankton zooplankton BWMS organism size Black Sea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AlgaeBase, National University of Ireland, Galway. Accessed December 14, 2017.
  2. Cullen, J.J. and MacIntyre, H.L., On the use of the serial dilution culture method to enumerate viable phytoplankton in natural communities of plankton subjected to ballast water treatment, J. Appl. Phycol., 2015, vol. 28, no. 1, pp. 279–298. doi 10.1007/s10811-015-0601-xCrossRefPubMedPubMedCentralGoogle Scholar
  3. Drake, L.A., Doblin, M.A., and Dobbs, F.C., Potential microbial bioinvasions via ships’ ballast water, sediment, and biofilm, Mar. Poll. Bull., 2007, vol. 55, pp. 333–341. CrossRefGoogle Scholar
  4. Drake, L.A., Tamburri, M.N., First, M.R., Smith, G.J., and Johengen, T.H., How many organisms are in ballast water discharge? A framework for validating and selecting compliance monitoring tools, Mar. Pollut. Bull., 2014, vol. 86, pp. 122–128.CrossRefPubMedGoogle Scholar
  5. Drozdov, V.V., Transboundary pollution of marine ecosystems by ballast water from large-capacity vessels and technologies for its prevention, Ekol. Promyshl. Ross., 2014, no. 9, pp. 38–43.Google Scholar
  6. Harrison, P.J., Zingone, A., Mickelson, M.J., Lehtinen, S., Ramaiah, N., Kraberg, A., Sun, J., McQuatters-Gollop, A., and Jakobsen, H.H., Cell volumes of marine phytoplankton from globally distributed coastal data sets, Est. Coast. Shelf Sci., 2015, vol. 162, pp. 130–142. CrossRefGoogle Scholar
  7. Hasle, G.R., Are most of the domoic acid-producing species of the diatom genus Pseudo-nitzschia cosmopolites?, Harmful Algae, 2002, vol. 1, pp. 137–146.CrossRefGoogle Scholar
  8. Hillebrand, H., Durselen, C., Kirschtel, D., Pollingher, U., and Zohary, T., Biovolume calculation for pelagic and benthic microalgae, J. Phycol., 1999, vol. 35, pp. 403–424.CrossRefGoogle Scholar
  9. Identifying Marine Phytoplankton, Tomas, C.R., Ed., San Diego: Academic, 1997.Google Scholar
  10. IMO, 2015: International Mathematical Olympiad. Accessed December 14, 2017.
  11. Kiselev, I.A., Plankton morei i kontinental’nykh vodoemov (Plankton of the Seas and Continental Reservoirs), Leningrad: Nauka, 1969, vol. 1.Google Scholar
  12. Lebedeva, L.P., Lukasheva, T.A., Anokhina, L.L., and Chasovnikov, V.K., Interannual variability in the zooplankton community in Golubaya Bay (Northeastern part of the Black Sea) in 2002–2012, Oceanology, 2015, vol. 55, no. 3, pp. 355–363.CrossRefGoogle Scholar
  13. Maracýn, E., Cell size as a key determinant of phytoplankton metabolism and community structure, Annu. Rev. Mar. Sci., 2015, vol. 7, pp. 241–264.CrossRefGoogle Scholar
  14. Mikaelyan, A.S., Malej, A., Shiganova, T.A., Turk, V., Sivkovitch, A.E., Musaeva, E.I., Kogovšek, T., and Lukasheva, T.A., Populations of the red tide forming dinoflagellate Noctiluca scintillans (Macartney): a comparison between the Black Sea and the northern Adriatic Sea, Harmful Algae, 2014, vol. 33, pp. 29–40.CrossRefGoogle Scholar
  15. Morozova, T.V., Selina, M.S., Stonik, I.V., Shevchenko, O.G., and Zvyagintsev, A.Yu., Phytoplankton in ships’ ballast waters in the port of Vladivostok, Russ. J. Biol. Invasions, 2011, vol. 2, no. 1, pp. 29–34.CrossRefGoogle Scholar
  16. Olenina, I., Hajdu, S., Edle, L., Andersson, A., Wasmund, N., Busch, S., Göbel, J., Gromisz, S., Huseby, S., Huttunen, M., Jaanus, A., Kokkonen, P., Ledaine, I., and Niemkiewicz, E., Biovolumes and size-classes of phytoplankton in the Baltic Sea, HELCOM Balt. Sea Environ. Proc., 2006, no. 106.Google Scholar
  17. Pautova, L.A., Mikaelyan, A.S., and Silkin, V.A., Structure of plankton phytocoenoses in the shelf waters of the Northeastern Black Sea during the Emiliania huxleyi Bloom in 2002–2005, Oceanology, 2007, vol. 47, no. 3, pp. 377–385.CrossRefGoogle Scholar
  18. Peter, K.H. and Sommer, U., Phytoplankton cell size: intra- and interspecific effects of warming and grazing, PLoS One, 2012, vol. 7, no. 11, p. e49632. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Poglazova, M.N. and Mitskevich, I.N., The use of fluorescamine to determine the amount of microorganisms in sea water by the epifluorescence method, Mikrobiologiya, 1984, no. 5, pp. 850–858.Google Scholar
  20. Ruiz, G.M., Carlton, J.T., Grosholz, E.D., and Hines, A.H., Global invasions of marine and estuarine habitats by non-indigenous species: mechanisms, extent, and consequences, Am. Zool., 1997, vol. 37, pp. 621–632. CrossRefGoogle Scholar
  21. Rukovodstvo po primeneniyu trebovanii Mezhdunarodnoi konventsii o kontrole sudovykh ballastnykh vod i osadkov i upravleniyu imi 2004 goda. Rossiiskii morskoi registr sudokhodstva (Guidance on the Application of the Requirements of the International Convention on the Control and Management of Ships’ Ballast Water and Sediments, 2004. Russian Maritime Register of Shipping), St. Petersburg, 2017.Google Scholar
  22. Shiganova, T.A., Alien species in the ecosystems of the southern inland seas of Eurasia, Extended Abstract of Doctoral (Biol.) Dissertation, 2009.Google Scholar
  23. Silkin, V.A. and Khailov, K.M., Bioekologicheskie mekhanizmy upravleniya v akvakul’ture (Bioecological Management Mechanisms in Aquaculture), Leningrad: Nauka, 1988.Google Scholar
  24. Silkin, V.A., Pautova, L.A., and Lifanchuk, A.V., Physiological regulatory mechanisms of the marine phytoplankton community structure, Russ. J. Plant Physiol., 2013, vol. 60, no. 4, pp. 541–548.CrossRefGoogle Scholar
  25. Silkin, V.A., Abakumov, A.I., Pautova, L.A., Mikaelyan, A.S., Chasovnikov, V.K., and Lukashova, T.A., Coexistence of nonnative and Black Sea species in phytoplankton of north-eastern part of the Black Sea: discussion of invasion hypotheses, Russ. J. Biol. Invasions, 2011, vol. 2, no. 4, pp. 256–264.CrossRefGoogle Scholar
  26. Thomaz, S.M., Kovalenko, K.E., Havel, J.E., and Kats, L.B., Aquatic invasive species: general trends in the literature and introduction to the special issue, Hydrobiologia, 2015, vol. 746, pp. 1–12. CrossRefGoogle Scholar
  27. Throndsen, J., Hasle, G.R., and Tangen, K., Norsk kystplanktonflora, Oslo: Almater Forlag AS, 2003.Google Scholar
  28. Vinogradov, M.E., Sapozhnikov, V.V., and Shushkina, E.A., Ekosistema Chernogo morya (Ecosystem of the Black Sea), Moscow: Nauka, 1992.Google Scholar
  29. World Register of Marine Species. Accessed December 14, 2017.
  30. Zaiko, A., Zaiko, A., Martinez, J.L., Ardura, A., Clusa, L., Borrell, Y.J., Samuiloviene, A., Roca, A., and Garcia-Vazquez, E., Detecting nuisance species using NGST: methodology short comings and possible application in ballast water monitoring, Mar. Environ. Res., 2015, vol. 112, part B, pp. 64–72. CrossRefPubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. A. Silkin
    • 1
    Email author
  • L. A. Pautova
    • 2
  • A. V. Fedorov
    • 1
  • E. I. Shitikov
    • 3
  • V. V. Drozdov
    • 4
  • T. A. Lukasheva
    • 1
  • D. A. Zasko
    • 2
  1. 1.Shirshov Institute of Oceanology (Southern Branch)Russian Academy of SciencesGelendzhikRussia
  2. 2.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  3. 3.OOO NPO ENTSt. PetersburgRussia
  4. 4.Krylov State Research CenterSt. PetersburgRussia

Personalised recommendations