Advertisement

Gyroscopy and Navigation

, Volume 9, Issue 4, pp 277–286 | Cite as

Attitude Determination Using Ambiguous GNSS Phase Measurements and Absolute Angular Rate Measurements

  • M. V. ZharkovEmail author
  • K. K. Veremeenko
  • D. A. Antonov
  • I. M. Kuznetsov
Article
  • 8 Downloads

Abstract

Integration of a multiantenna GNSS receiver and inertial sensors (gyroscopes) is proposed to determine attitude parameters using GNSS phase measurements, containing integer ambiguity, and measurements of the absolute rotation rate of a moving vehicle. The potential accuracy of the proposed technology is estimated based on the simulation and full-scale tests. The implementation of the proposed approach is considered.

Keywords

GNSS integrated navigation system resolution of the integer ambiguity of phase measurements determination of attitude parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schleppe, J.B., Development of a real-time attitude system using a quaternion parameterization and non-dedicated GPS receivers. UCGE Reports Number 20096, Department of Geomatics Engineering, The University of Calgary, Canada, 1996.Google Scholar
  2. 2.
    Emel’yantsev, G.I. and Stepanov, A.P. Integrirovannye inertsial’no-sputnikovye sistemy orientatsii i navigatsii (INS/GNSS integrated orientation and navigation systems), Peshekhonov, V.G., Ed., Kontsern TsNII Elektropribor, 2016.Google Scholar
  3. 3.
    Povalyaev, A.A. Opredelenie orientatsii ob”ektov po signalam global’nykh navigatsionnykh sputnikovykh system: opredelenie orientatsii po odnomomentnym izmereniyam (Determination of an Object’s Orientation by GNSS Signals: Determination of Orientation by Single-Step Measurements). Moscow: MAI, 2015.Google Scholar
  4. 4.
    Stepanov, O.A. and Koshaev, D.A., Studying methods for orientation problem solution using satellite systems, Giroskopiya i Navigatsiya, 1999, no. 2 (25), pp. 30–55.Google Scholar
  5. 5.
    GOST 20058–80 Dinamika letatel’nykh apparatov v atmosfere. Terminy, opredeleniya i oboznacheniia (Aircraft Dynamics in the Atmosphere. Terms, definitions, and notation).Google Scholar
  6. 6.
    Savage, P.G., Strapdown Analytics. Part 1. Maple Plain, Minnesota: Strapdown Analytics, Inc. 2000Google Scholar
  7. 7.
    Cohen, C.E., Attitude determination, Global Positioning System. Theory and applications, in American Institute of Aeronautics and Astronautics, Washington, D.C., 1996, vol. II, Chapter 19, pp. 519–538.Google Scholar
  8. 8.
    Emel’yantsev, G.I., Blazhnov, B.A., and Stepanov, A.P., Attitude determination by INS/GNSS system aided by phase and magnetometer measurements for spinning vehicles, Giroskopiya i Navigatsiya, 2014, vol. 5, vol. 4, pp. 205–212.Google Scholar
  9. 9.
    Emel’yantsev, G.I., Stepanov, A.P., Blazhnov, B.A., and Semenov, I.V., GLONASS data processing in GPS compass with antenna base equal to carrier wavelenght, 22nd St. Petersburg International Conference on Integrated Navigation Systems, 2015, pp. 9–19.Google Scholar
  10. 10.
    Antonov, D.A., Veremeenko, K.K., Zharkov, M.V., Zimin, R.Yu., Kuznetsov, I.M., and Pron’kin, A.N., Test Complex for the Onboard Navigation System of an Airport Ground Vehicle, Journal of Computer and Systems Sciences International, 2016, vol. 55, no. 5, pp. 832–841.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. V. Zharkov
    • 1
    Email author
  • K. K. Veremeenko
    • 1
  • D. A. Antonov
    • 1
  • I. M. Kuznetsov
    • 1
  1. 1.Moscow Aviation Institute (MAI) (National Research University)MoscowRussia

Personalised recommendations