Advertisement

Gyroscopy and Navigation

, Volume 9, Issue 3, pp 162–176 | Cite as

Nuclear Magnetic Resonance Gyro: Ultimate Parameters

  • A. K. Vershovskii
  • Yu. A. Litmanovich
  • A. S. Pazgalev
  • V. G. Peshekhonov
Article

Abstract

The fundamental limitations for the basic metrological parameters of the nuclear magnetic resonance gyro (NMRG) are analyzed. The determinant factors limiting its sensitivity, such as atomic projection noise and light shot noise, are considered. Formulas are derived to estimate the ultimate sensitivity of the NMRG and study its dependence on the parameters of the sensitive element. The main causes of NMRG drifts and possible ways to improve its metrological characteristics are discussed.

Keywords

nuclear magnetic gyro nuclear magnetic resonance optical pumping spin-exchange pumping ultimate sensitivity atomic discriminator atomic projection noise 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peshekhonov, V.G., Navigatsionnye sistemy (Navigation Systems), Vestnik RAN, 1997, vol. 67, no. 1, pp. 43–52.Google Scholar
  2. 2.
    Peshekhonov, V.G., Gyroscopic navigation systems: Current status and prospects, Gyroscopy and Navigation, 2011, vol. 2, no. 3, pp. 111–118.CrossRefGoogle Scholar
  3. 3.
    Karwacki, F. A., Nuclear magnetic resonance gyro development, J. Inst. Navigation, 1980, vol. 27, no. 1, pp. 72–78.CrossRefGoogle Scholar
  4. 4.
    Goldstein, M.G. et al., Inertial Navigation, Proc. IEEE, 1983, vol. 71, pp. 1156–1176.CrossRefGoogle Scholar
  5. 5.
    Härle, P., Wäckerle, G., and Mehring, M., A Nuclearspin based rotation sensor using optical polarization and detection methods, Appl. Magn. Reson, 1993, vol. 5, pp. 207–220.CrossRefGoogle Scholar
  6. 6.
    Kornack, T.W., Ghosh, R.K., and Romalis, M.V., Nuclear spin gyroscope based on an atomic co-magnetometer, Phys. Rev. Lett., 2005, vol. 95, pp. 230801.CrossRefGoogle Scholar
  7. 7.
    Kitching, J., Knappe, S., and Donley, E., Atomic Sensors–A Review, IEEE Sensors, 2011, vol. 11, no. 11, pp. 1749–1758.CrossRefGoogle Scholar
  8. 8.
    Zhang, C., Yuan, H., Tang, Z., Quan, W., and Fang, J.C., Inertial rotation measurement with atomic spins: From angular momentum conservation to quantum phase theory, Appl. Phys. Reviews, 2016, vol. 3, pp. 041305.CrossRefGoogle Scholar
  9. 9.
    Meyer, D., and Larsen, M., Nuclear magnetic resonance gyro for inertial navigation, Gyroscopy and Navigation, 2014, vol. 5, no. 2, pp. 75–82.CrossRefGoogle Scholar
  10. 10.
    Walker, T.G., Larsen, M.S., Spin-Exchange-Pumped NMR Gyros, Adv. At. Mol. Opt. Phys., 2016, vol. 65, pp. 377–405.Google Scholar
  11. 11.
    Grover, B. C. Noble-Gas NMR Detection through Noble-gas-rubidium hyperfine contact interaction, Phys. Rev. Lett.,1978, vol. 40, no. 6, pp. 391–392.CrossRefGoogle Scholar
  12. 12.
    Schaefer, S.R., Cates, G.D., Chien, Ting-Ray, Gonatas, D., Happer, W., and Walker, T. G., Frequency shifts of the magnetic-resonance spectrum of mixtures of nuclear spin-polarized noble gases and vapors of spin-polarized alkali-metal atoms, Phys. Rev. A. 1989, vol. 39, no. 11, pp. 5613–5623.CrossRefGoogle Scholar
  13. 13.
    Liu, Y., Shi, M., and Wang, X., Progress on atomic gyroscope, Proc. of the 24th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, Russia, 2017, pp. 344–352.CrossRefGoogle Scholar
  14. 14.
    Wang, S.G., Xu C., Feng, H.H., and Wang, L.J., Progress on Novel Atomic Magnetometer and Gyroscope Based on Self-sustaining of Electron Spins, China Satellite Navigation Conference (CSNS), 2017, Proc. vol. 2, pp. 535–541.Google Scholar
  15. 15.
    Happer, W., Jau, Y.-Y., and T. Walker, Optically Pumped Atoms, WILEY-VCH Verlag GmbH & Co. KGaA, 2011, p. 234.Google Scholar
  16. 16.
    Gemmel, C., Heil, W., Karpuk, S. et al., Ultra-sensitive magnetometry based on free precession of nuclear spins, Eur. Phys. J. D, 2010, vol. 57, pp. 303–320.CrossRefGoogle Scholar
  17. 17.
    Budker, D. and Romalis, M., Optical magnetometry, Nature Physic, 2007, vol. 3, pp. 227–234.CrossRefGoogle Scholar
  18. 18.
    Ventsel, E.S., Teoriya veroyatnostei (Probability Theory), Vysshaya Shkola, Moscow, 1999.Google Scholar
  19. 19.
    IEEE std. 1554–2005, IEEE Recommended Practice for Inertial Sensor Test Equipment, Instrumentation, Data Acquisition, and Analysis, IEEE Aerospace and Electronic Systems Society, 2005, Chapter 19.7.2, Velocity and angle random walk per root hour.Google Scholar
  20. 20.
    Cohen-Tannoudji, C., DuPont-Roc, J., Haroche, S., and Laloe, F., Detection of the Static Magnetic Field Produced by the Oriented Nuclei of Optically Pumped 3He Gas, Phys. Rev. Lett., 1969, vol. 22, no. 15, pp. 758–760.CrossRefGoogle Scholar
  21. 21.
    Armenise, M. N. et al., Advances in Gyroscope Technologies. Springer-Verlag, Berlin, 2010, (Eq.1.8).zbMATHGoogle Scholar
  22. 22.
    Aleksandrov, E.B. and Vershovskii, A.K., Modern radio-optical methods in quantum magnetometry, Physics–Uspekhi, 2009, vol. 52, no. 6, pp. 573–601.Google Scholar
  23. 23.
    Kanegsberg, E., A Nuclear Magnetic Resonance (NMR) Gyro With Optical Magnetometer Detection, Proc. SPIE, 1978, vol. 157, Laser Inertial Rotation Sensors, pp. 73–80.Google Scholar
  24. 24.
    Vershovski, A.K. and Pazgalev, A.S., Optimization of quality factor of optically pumped Mx-resonance, ZhTF (Journal of Technical Physics), 2008, vol. 53, no. 5, pp. 646–654.Google Scholar
  25. 25.
    Pitz, G.A., Wertepny, D.E., and Perram, G.P., Pressure broadening and shift of the cesium D1 transition by the noble gases and N2, H2, HD, D2, CH4, C2H6, CF4, and 3He, Phys. Rev A, 2009, vol. 80, pp. 062718.Google Scholar
  26. 26.
    Zeng, X., Wu, Z., Call, T., Miron, E., Schreiber, D., and Happer, W., Experimental determination of the rate constants for spin exchange between optically pumped K, Rb, and Cs atoms and Xe nuclei in alkalimetal–noble-gas van der Waals molecules, Phys. Review A, 1985, vol. 31, no. 1, pp. 260–278.Google Scholar
  27. 27.
    Happer, W., Spin exchange-past, present, and future, Ann. Phys. Fr., 1985, vol. 10, pp. 645–657.CrossRefGoogle Scholar
  28. 28.
    Happer, W., Miron, E., Schaefer, S., Schreiber, D., van Wijngaarden, W. A., and Zeng, X., Polarization of the nuclear spins of noble-gas atoms by spin exchange with optically pumped alkali-metal atoms, Phys. Rev. A, 1984, vol. 29, no. 6, pp. 3092–3110.CrossRefGoogle Scholar
  29. 29.
    Cates, G.D., Fitzgerald, R.J., Barton, A.S., Bogorad, P., Gatzke, M., Newbury, N.R., and Saam, B., Rb129Xe spin-exchange rates due to binary and three-body collisions at high Xe pressures, Phys. Rev. A, 1992, vol. 45, no. 5, pp. 4631–4639.CrossRefGoogle Scholar
  30. 30.
    Walker, T.G., Happer, W., Spin-exchange optical pumping of noble-gas nuclei, Reviews of Modern Physics, 1997, vol. 69, no. 2, pp. 529–642.CrossRefGoogle Scholar
  31. 31.
    Cohen-Tannoudji, C., Dupont-Roc, J., Haroche, S., and Laloë, F., Diverses resonances de croisement de niveaux sur des atomes pompes optiquement en champ nul. I. Theorie, Rev. de Phys. Appl., 1970, vol. 5, pp. 95–101.CrossRefGoogle Scholar
  32. 32.
    Bulatowicz, M., Griffith, R., Larsen, M., et al., Laboratory Search for a Long-Range T-Odd, P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polaized 129Xe and 131Xe Gas, Phys. Rev. Lett., 2013, vol. 111, pp. 102001.Google Scholar
  33. 33.
    Salleras, M., Eklund, E.J., Prikhodko, I.P., and Shkel, A.M., Predictive thermal model for indirect temperature measurement inside atomic cell of nuclear magnetic resonance gyroscope, TRANSDUCERS 2009–International Solid-State Sensors, Actuators and Microsystems Conference, Denver, CO, USA, pp. 304–307.CrossRefGoogle Scholar
  34. 34.
    Nesmeyanov, A. N., Vapour Pressure of the Elements (translated by J.I. Carasso), Academic Press, NY, 8.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. K. Vershovskii
    • 1
  • Yu. A. Litmanovich
    • 2
  • A. S. Pazgalev
    • 1
  • V. G. Peshekhonov
    • 2
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Concern CSRI ElektropriborJSCSt. PetersburgRussia

Personalised recommendations