Gyroscopy and Navigation

, Volume 9, Issue 3, pp 183–190 | Cite as

Behavior of Signal from Optical Circuit of Quantum Rotation Sensor Based on Nuclear Magnetic Resonance

  • E. N. Popov
  • K. A. Barantsev
  • N. A. Ushakov
  • A. N. Litvinov
  • L. B. Liokumovich
  • A. N. Shevchenko
  • F. V. Sklyarov
  • A. V. Medvedev


The paper considers a common operation principle of a quantum rotation sensor based on nuclear magnetic resonance, giving a semi-classical description of processes in the sensor circuit, that is useful for obtaining the analytical representation of a signal at the optical circuit output. The principles of numerical calculation are briefly presented for an optical signal of the rotation sensor based on a one-dimensional quantum model. Comparison of calculations according to classical model and more stringent quantum model has shown that the sensor signal has a more complicated structure than that following from the classical description which shows only some properties of dynamic processes in the circuit. The results are important for the development of methods for demodulating the quantum rotation sensor optical signal and for estimation of expected characteristics of practical devices.


nuclear magnetic resonance electronic paramagnetic resonance polyharmonic signal rotation sensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Larsen, M., and Bulatowicz, M., Nuclear Magnetic Resonance Gyroscope: For DARPA’s micro-technology for positioning, navigation and timing program, IEEE International Frequency Control Symposium Proceedings, 2012.Google Scholar
  2. 2.
    Woodman, O.J., An Introduction to Inertial Navigation: Technical Report no. 696, University of Cambridge Computer Laboratory, 2007.Google Scholar
  3. 3.
    Jekeli, C., Inertial Navigation Systems with Geodetic Applications, Walter de Gruyter, 2001.CrossRefGoogle Scholar
  4. 4.
    Fang, J. and Qin, J., Advances in Atomic Gyroscopes: A View from Inertial Navigation Applications, Sensors (Basel), 2012, no. 12 (5), pp. 6331–6346.CrossRefGoogle Scholar
  5. 5.
    Lefèvre, H.C., The Fiber-Optic Gyroscope: Challenges to Become the Ultimate Rotation-Sensing Technology, Optical Fiber Technology, 2013, vol. 19, issue 6, part B, pp. 828–832.Google Scholar
  6. 6.
    Rabi, I.I., Zacharias, J.R., Millman, S., and Kusch, P., A New Method of Measuring Nuclear Magnetic Moment, Physical Review, 1938, vol. 53, no. 4, pp. 318–327.CrossRefGoogle Scholar
  7. 7.
    Pomerantsev, N.M., Yavlenie spinovykh ekho i ego primenenie (Spin Echo Phenomenon and Its Applications), UFN, 1958, no. 1, pp. 87–110.CrossRefGoogle Scholar
  8. 8.
    Waters, G.S., and Francis, P.D., A Nuclear Magnetometer, Journal of Scientific Instruments, 1958, vol. 35, no. 3, pp. 88–93.CrossRefGoogle Scholar
  9. 9.
    Gabuda, S.P., Pletnev, R.N., and Fedotov, M.A., Yadernyi magnitnyi rezonans v neorganicheskoi khimii (Nuclear Magnetic Resonance in Inorganic Chemistry), Moscow, Nauka, 1988.Google Scholar
  10. 10.
    Lauterbur, P.C., Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance, Nature, 1973, vol. 242, pp. 190–191.CrossRefGoogle Scholar
  11. 11.
    Maleev, P.I., Novye tipy giriskopov (New Types of Gyroscopes), Leningrad, 1971.Google Scholar
  12. 12.
    Simpson, J.H., Fraser, J.T., and Greenwood, I.A., An Optically Pumped Nuclear Magnetic Resonance Gyroscope, IEEE Trans. Aerosp. Support, 1963, vol. 1, pp. 1107–1110.CrossRefGoogle Scholar
  13. 13.
    Fang, J.C. and Qin, J., Advances in Atomic Gyroscopes: A View from Inertial Navigation Applications, Sensors, 2012, vol. 12, pp. 6331–6346.CrossRefGoogle Scholar
  14. 14.
    Donley, E.A., Nuclear Magnetic Resonance Gyroscopes, IEEE SENSORS 2010 Conference, 2010, pp. 17–22.Google Scholar
  15. 15.
    Litmanovich, Yu.A., Vershovskii, A.K., and Peshekhonov, V.G., Nuclear Magnetic Resonance Gyro: Past, Present, Future, 7-ya Rossiiskaya multikonferentsiya po problemam upravleniya, materialy plenarnogo zasedaniya (7th Russian Conference on Control Problems, Proceedings of the Plenary Session), St. Petersburg, 2014, pp. 35–42.Google Scholar
  16. 16.
    Meyer, D., and Larsen, M., Nuclear Magnetic Resonance Gyro for Inertial Navigation, Gyroscopy and Navigation, vol. 5, no. 2, pp. 75−82.Google Scholar
  17. 17.
    Walker, T.G., and Larsen, M.S., Spin-Exchange-Pumped NMR Gyros, Advances in Atomic, Molecular, and Optical Physics, 2016, vol. 65, pp. 373–401.CrossRefGoogle Scholar
  18. 18.
    Kuraptsev, A.S. and Sokolov, I.M., Spontaneous Decay of an Atom Excited in a Dense and Disordered Atomic Ensemble: Quantum Microscopic Approach, Phys. Rev. A, 2014, vol. 90, issue 1.Google Scholar
  19. 19.
    Sokolov, I.M., Influence of Hyperfine Structure of the Atomic States on the Collective Effects in the Rb2 Quasi-molecule, Journal of Experimental and Theoretical Physics, 2017, vol. 125, no. 4, pp. 551–563.CrossRefGoogle Scholar
  20. 20.
    Blum, K., Density Matrix Theory and Applications, Springer Series on Atomic, Optical and Plasma Physics, 2012.CrossRefGoogle Scholar
  21. 21.
    Abraham, A., Yadernyi Magnetizm (Nuclear Magnetism), Moscow, Izdatelstvo inostrannoi literatury, 1963.Google Scholar
  22. 22.
    Popov, E.N., Barantsev, K.A., and Litvinov, A.N., Control of the Nuclear Spin of the 129Xe and 131Xe Isotopes in the Spin-Exchange Interaction with 87Rb Atoms, Physics of Wave Phenomena, 2016, vol. 24, no. 3, pp. 203–213.CrossRefGoogle Scholar
  23. 23.
    Dong, H., Fang, J., Qin, J., and Chen, Y., Analysis of the Electrons-Nuclei Coupled Atomic Gyroscope, Optics Communications, 2011, vol. 284, no. 12, pp. 2886–2889.CrossRefGoogle Scholar
  24. 24.
    Fang, J., Wan, S., and Yuan, H., Dynamics of an All-Optical Atomic Spin Gyroscope, Applied Optics, 2013, vol. 52 (30), pp. 7220–7227.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. N. Popov
    • 1
  • K. A. Barantsev
    • 1
  • N. A. Ushakov
    • 1
  • A. N. Litvinov
    • 1
  • L. B. Liokumovich
    • 1
  • A. N. Shevchenko
    • 2
  • F. V. Sklyarov
    • 1
    • 2
  • A. V. Medvedev
    • 1
  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Concern CSRI ElektropriborJSCSt. PetersburgRussia

Personalised recommendations