Gyroscopy and Navigation

, Volume 9, Issue 2, pp 138–146 | Cite as

Comparison of Time Scales by the Common-View Method Using GLONASS Measurements and Taking into Account the Integer Property of Phase Ambiguities

  • I. O. Skakun
  • V. V. Mitrikas


Comparison of time scales by a differential method using signals from global navigation satellite systems (GNSS) is discussed. The results of the experimental study show the possibility of taking into account the integer property of ambiguities of GLONASS navigation satellites. The random error in the comparison of time scales is about 55 picoseconds.


GLONASS phase ambiguity satellite systems error time scale 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Melbourne, W.G., The case for ranging in GPS-based geodetic systems, Proc. 1st International Symposium on Precise Point Positioning with the Global Positioning System, 1985, pp. 373–386.Google Scholar
  2. 2.
    Wubbena, G., Software developments for geodetic positioning with GPS using TI-4100 code and carrier measurements, Proc. 1st International Symposium on Precise Point Positioning with the Global Positioning System, 1985, pp. 403–412.Google Scholar
  3. 3.
    Petit, G., Kanj, A., Loyer, S., Delporte, J., Mercier, F., and Perosanz, F. 1 × 10-16 frequency transfer by GPS PPP with integer ambiguity resolution, Metrologia, 2015, vol. 52, no. 2, pp. 301–309.CrossRefGoogle Scholar
  4. 4.
    Penzin, K.V., Algorithms of online processing of multichannel measurements by the maximum credibility criterion, Radiotekhnika i elektronika, 1990, vol. 35, no. 1, pp. 97–106.Google Scholar
  5. 5.
    Perov, A.I. and Kharisov, V.N., GLONASS: printsipy postroeniya i funktsionirovaniya (GLONASS: Principles of Construction and Functioning), Moscow, Radiotekhnika, 2010.Google Scholar
  6. 6.
    Povalyaev, A.A., Sputnikovye radionavigatsionnye sistemy: vremya, pokazaniya chasov, formirovanie izmerenii i opredelenie otnositel’nykh koordinat (Radionavigation Satellite Systems: Time, Clock Readings, Measurement Formation, and Determination of Relative Coordinates, Moscow, Radiotekhnika, 2008.Google Scholar
  7. 7.
    Yao, J., Skakun I., Jiang, Z., and Levine, J., A detailed comparison of two continuous GPS carrier-phase time transfer techniques, Metrologia, 2015, vol. 52, no. 5, p.666.CrossRefGoogle Scholar
  8. 8.
    Defraigne, P. and Bruyninx, C., On the link between GPS pseudorange noise and day-boundary discontinuities in geodetic time transfer solutions, GPS Solutions, 2007, vol. 11, no. 4, pp. 239–249.CrossRefGoogle Scholar
  9. 9.
    Sleewagen, J., Simsky, A., Wilde, W.D., Boon, F., and Willems, T., Demystifying GLONASS inter-frequency carrier phase biases, Inside GNSS, May/June, 2012.Google Scholar
  10. 10.
    Delporte, J., Mercier, F., Laurichesse, D., and Galy, O., GPS Carrier-Phase Time Transfer Using Single-Difference Integer Ambiguity Resolution, International Journal of Navigation and Observation, 2008, vol. 2008, p. e273785.CrossRefGoogle Scholar
  11. 11.
    Hanson, D.W., Fundamentals of two-way time transfers by satellite, Proc. 43rd Annual Symposium on Frequency Control, 1989, pp. 174–178.CrossRefGoogle Scholar
  12. 12.
    Hauschild, A. and Montenbruck, O., The effect of correlator and front-end design on GNSS pseudorange biases for geodetic receivers, Navigation, 2016, vol. 63, no. 4, pp. 443–453.CrossRefGoogle Scholar
  13. 13.
    Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E., GNSS–Global Navigation Satellite Systems, Vienna: Springer Vienna, 2008.Google Scholar
  14. 14.
    Laurichesse, D., Mercier, F., Berthias, J.-P., Broca, P., and Cerri, L., Integer ambiguity resolution on undifferenced GPS phase measurements and its application to PPP and satellite precise orbit determination, Navigation, 2009, vol. 56, no. 2, pp. 135–149.CrossRefGoogle Scholar
  15. 15.
    Tatarnikov, D.V. and Astakhov, A.V., Approaching millimeter accuracy of GNSS positioning in real time with large impedance ground plane antennas, Proc. ION ITM, 2014, pp. 844–848.Google Scholar
  16. 16.
    Teunissen, P.J.G., The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation, Journal of Geodesy, 1995, vol. 70, no. 1–2, pp. 65–82.CrossRefGoogle Scholar
  17. 17.
    Rost, M., Piester, D., Yang, W., Feldmann, T., Wübbena, T., and Bauch, A., Time transfer through optical fibres over a distance of 73 km with an uncertainty below 100 ps., Metrologia, 2012, vol. 49, no. 6, p.772.CrossRefGoogle Scholar
  18. 18.
    Verhagen, S., The GNSS integer ambiguities: estimation and validation, TU Delft, Delft University of Technology, 2005.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Information and Analysis Center for Positioning, Navigation and Timing (IAC PNT)Central Research Institute for Machine Building (TsNIIMash)KorolevRussia

Personalised recommendations