Advertisement

Gyroscopy and Navigation

, Volume 9, Issue 2, pp 124–130 | Cite as

Determining Deflections of the Vertical in the Western Siberia Region: The Results of Comparison

  • N. S. Kosarev
  • V. F. Kanushin
  • V. I. Kaftan
  • I. G. Ganagina
  • D. N. Goldobin
  • G. N. Efimov
Article

Abstract

At present, information on deflections of the vertical (DOV) is obtained by means of modern global geopotential models. The authors have derived DOV model values in the Western Siberia region. The results of the comparison of the DOV model values calculated with the use of the global geopotential model EIGEN-6C4 and the astrogeodetic measurements taken in the Western Siberia region are analyzed. The study has shown that in plains, standard deviations of DOV model values from the terrestrial data obtained by traditional astrogeodetic method do not exceed 1 arcsec.

Keywords

deflection of the vertical astrogeodetic method harmonic coefficients of the geopotential modern global geopotential models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koneshov, V.N. et al., Accuracy estimation of the global Earth gravity field models, Fizika Zemli, 2014, no. 1, pp. 129–138.Google Scholar
  2. 2.
    Dmitriev, S.P., Inertsial’nye metody v inzhenernoi geodezii (Inertial Methods in Engineering Geodesy), St. Petersburg, CSRI Elektropribor, 1997.Google Scholar
  3. 3.
    Mashimov, M.M., Vysshaya geodeziya (Higher Geodesy), Moscow: VIA, 1991.Google Scholar
  4. 4.
    Zakatov, P.S., Kurs vysshei geodezii (Course of Higher Geodesy), Moscow: Nedra, 1976.Google Scholar
  5. 5.
    Glazunov, A.S., Modern trends in geodetic astronomy, GEO-SIBIR’-2008, Sb. materialov IV Mezhdunar. nauch. kongressa (GEO-SIBIR’-2008, Proc. IV Int. Scientific Congress), April 22–24, 2008, Novosibirsk: SGGA, 2008, vol. 1: Geodeziya, geoinformatika, kartografiya, marksheideriya (Geodesy, Geoinformatics, Cartography, Mine Surveying), part 1, pp. 183–188.Google Scholar
  6. 6.
    Teleganov, N.A. and Elagin, A.V., Vysshaya geodeziya i osnovy koordinatno-vremennykh sistem: ucheb. posobie (Higher Geodesy and the Fundamentals of Coordinate-Time Systems), Novosibirsk: SGGA, 2004.Google Scholar
  7. 7.
    Shimbirev, B.P., Teoriya figury Zemli (Theory of the Figure of the Earth), Moscow: Nedra, 1975.Google Scholar
  8. 8.
    Rozhkov, Yu.A. et al., Using the results of aerogravimetric measurements to calculate deflections of the vertical in hard-to-reach areas, Fizika Zemli, 2005, no. 2, pp. 84–87.Google Scholar
  9. 9.
    Koneshov, V.N., Osika, I.V., and Stepanova, I.E., Methods for calculating deflections of the vertical using S-approximations, Fizika Zemli, 2007, no. 6, pp. 19–25.Google Scholar
  10. 10.
    Boyarskii, E.A. et al., Calculation of vertical deflections and the geoid kurtosis based on gravity anomalies, Fizika Zemli, 2010, no. 6, pp. 80–85.Google Scholar
  11. 11.
    Koneshov, V.N. et al., Approbation of new methods to calculate deflections of the vertical based on S-and R-approximations in the Atlantic, Fizika Zemli, 2015, no. 1, pp. 128–139.Google Scholar
  12. 12.
    Gienko, E.G., Strukov, A.A., and Reshetov A.P., Studying the accuracy of normal heights and vertical deflections on the territory of the Novosibirsk region using the global geoid model EGM2008, Interekspo GEO-Sibir’-2011, vol. 1, no. 2, pp. 186–191.Google Scholar
  13. 13.
    Koneshov, V.N., Nepoklonov, V.B., and Avgustov, L. I., Estimating the navigation informativity of the Earth’s anomalous gravity field for extreme navigation, Aviakosmicheskoe priborostroenie, 2016, no. 3, pp. 22–29.Google Scholar
  14. 14.
    Tsurikov, A.A., Studying the accuracy of determining the astronomical and geodetic deflections of the vertical with the use of GPS/GLONASS, Izvestiya vuzov. Geodeziya i aerofotos”emka, 2012, no. 2, pp. 13–16.Google Scholar
  15. 15.
    Hirt, C., Modern determination of vertical deflections using digital zenith cameras, Journal Surveying Engineering, 2010, vol. 136, issue 1, pp. 1–12.CrossRefGoogle Scholar
  16. 16.
    Nepoklonov, V.B., Methods for determining deflections of the vertical and quasigeoid heights using gravity data, In Gravimetriya i geodesia (Gravimetry and Geodesy), Brovar, B.V., Ed., Moscow: Nauchnyi mir, 2010, pp. 455–464.Google Scholar
  17. 17.
    Peshekhonov, V.G., Stepanov, O.A., Evstifeev, M.I, et al., Sovremennye metody i sredstva izmereniya parametrov gravitatsionnogo polya Zemli (Modern Methods and Means of Measuring the Parameters of the Earth’s Gravitational Field), St. Petersburg: Elektroptibor, 2017.Google Scholar
  18. 18.
    Karpik, A.P., Kanushin, V.F., Ganagina, I.G., Goldobin, D.N., and Mazurova, E.M., Analyzing spectral characteristics of the global Earth gravity field models obtained from the CHAMP, GRACE and GOCE space missions, Gyroscopy and Navigation, 2015, vol. 6, no. 2, pp. 101–108.CrossRefGoogle Scholar
  19. 19.
    Karpik, A.P. et al., Evaluation of recent Earth’s global gravity field models with terrestrial gravity data, Contributions to Geophysics and Geodesy, 2016, vol. 46, no. 1, pp. 1–11.CrossRefGoogle Scholar
  20. 20.
    Förste, C. et al., EIGEN-6C4: The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. http://icgem.gfz-potsdam.de/getmodel/doc/7fd8fe44aa1518cd79ca84300aef4b41ddb2364aef9e82b7cdaabdb60a9053f1
  21. 21.
    Shako, R. et al., EIGEN-6C: A high-resolution global gravity combination model including GOCE Data, In Observation of the System Earth from Space -CHAMP, GRACE, GOCE and Future Missions. Science Report, 2014, no. 20, pp. 155–161.CrossRefGoogle Scholar
  22. 22.
    Andersen, O.B., Knudsen, P., and Berry, P., DNSC08 mean sea surface and mean dynamic topography models, Journal of Geophysical Research, 2009, vol. 114. doi 10.1029/2008JC005179Google Scholar
  23. 23.
    Andersen, O.B., The DTU10 gravity field and mean sea surface, Second International Symposium of the Gravity Field of the Earth (IGFS2). http://www.space.dtu.dk/english/Research/Scientific_data_and_-models/Global_Marine_Gravity_Field.
  24. 24.
    Rukovodstvo pol’zovatelya po vypolneniyu rabot v sisteme koordinat 1995 goda (SK-95). GKINP (GNTA)-06-278-04. (User’s Handbook for Working in the Coordinate System SK-95). Moscow: TsNIIGAiK, 2004.Google Scholar
  25. 25.
    Parametry Zemli 1990 (PZ 90.11). Spravochnoe rukovodstvo (Parameters of the Earth 1990) (PZ 90.11). Reference Guide, Moscow: Nauchno-issledovatelskii tsentr topogeodezicheskogo i navigatsionnogo obespecheniya “27 TsNII Minoborony Rossii, 2014.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. S. Kosarev
    • 1
  • V. F. Kanushin
    • 1
  • V. I. Kaftan
    • 2
  • I. G. Ganagina
    • 1
  • D. N. Goldobin
    • 1
  • G. N. Efimov
    • 3
  1. 1.Siberian State University of Geosystems and TechnologiesNovosibirskRussia
  2. 2.The Geophysical Center of the Russian Academy of Sciences (GC RAS)Moscow RUDN UniversityMoscowRussia
  3. 3.Federal Scientific and Technical Center of GeodesyCartography and Spatial Data Infrastructure (SDI)MoscowRussia

Personalised recommendations