Advertisement

Gyroscopy and Navigation

, Volume 9, Issue 1, pp 50–56 | Cite as

Simulation of Translational Vibrations Effect on Torque-to-Balance RR-Type MEMS Gyroscope

  • E. A. Baranova
  • M. I. Evstifeev
  • D. P. Eliseev
Article

Abstract

A mathematical model of torque-to-balance MEMS gyroscope with a drive mode in plane is developed. The model considers compensational control loop, proof-mass dynamics, electromechanical nonlinear effects in capacitive transducers and the inequality of their parameters. The response of the resulting system to translational vibrations is investigated. Qualitative coincidence of simulation results with experimental data is obtained. A way of increasing vibration reliability is highlighted.

Keywords

MEMS gyroscope vibrations simulation Simulink 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peshekhonov, V.G., Evstifeev, M.I., Nekrasov, Ya.A., Moiseev, N.V., and Pavlova, S.V., Russian RR-type MEMS Gyro. Current Status and Prospects, Informatsionnoe Protivodeistvie Ugrozam Terrorizma, 2012, No. 19, pp. 108–114.Google Scholar
  2. 2.
    Peshekhonov V.G., Nekrasov Y.A., Pfluger P., Kergueris C., Haddara H., and Elayed A. The results of an RR-type micromechanical gyroscope //IEEE Aerospace and Electronic Systems Journal, 2011, No. 1, pp. 14–21. doi 10.1109/MAES.2011.5719651CrossRefGoogle Scholar
  3. 3.
    Claire T., Guillaume G., and Mike P. High-End Gyroscopes, Accelerometers and IMUs for Defense, Aerospace & Industrial [Online], Yole Development, 2015. Access: https://www.i-micronews.com/report/product/high-end-gyroscopes-accelerometers-and-imusfor-defense-aerospace-industrial.htmlGoogle Scholar
  4. 4.
    Luk’yanov, D.P., Raspopov, V.Ya., and Filatov, Yu.V., Prikladnaya teoriya giroskopov (Applied Theory of Gyroscopes), Concern CSRI Elektropribor, JSC, Saint Petersburg, 2015, 316 pages.Google Scholar
  5. 5.
    Raspopov, V.Ya., Mikromekhanicheskie pribory: Uchebnoe posobie (MEMS Gyros: Tutorial), Grif i K, Tula, 2004, 476 pages.Google Scholar
  6. 6.
    Acar C. and Shkel A., MEMS Vibratory Gyroscopes: Structural Approaches to Improve Robustness, Springer Science & Business Media, 2008.Google Scholar
  7. 7.
    Evstifeev, M.I., Eliseev, D.P., Kovalev, A.S., and Rozentsvein, D.V., Issledovanie dinamiki mikromekhanicheskogo giroskopa pri mekhanicheskikh vozdeistviyakh (Research of the MEMS Gyro Dynamics under the Mechanical Impacts), Scientific and Technical Journal of Information Technologies, Mechanics and Optics (ITMO University), Saint Petersburg, 2011, pp. 49–58.Google Scholar
  8. 8.
    Kovalev, A.S., Evstifeev, M.I., and Eliseev, D.P., Analysis of Electromechanical Model of RR-type MEMS Gyro, Materialy XXVIII konferentsii pamyati vydayushchegosya konstruktora giroskopicheskikh priborov N.N. Ostryakova (Proceedings of the 28th Conference in Memory of N.N. Ostryakov), St. Petersburg, Concern CSRI Elektropribor, 2012.Google Scholar
  9. 9.
    Eliseev, D.P., Klassifikatsiya metodov povysheniya stoikosti mikromekhanicheskikh giroskopov k inertsionnym vozveistviyam (Classification of Methods for Enhancing MEMS Gyro Resistance to Inertial Effects), Materialy XIV konferentsii molodykh uchenykh “Navigatsia i Upravlenie Dvizheniem” (Proceedings of the 14th Conference of Young Scientists “Navigation and Motion Control”), Concern CSRI Elektropribor, 2015, pp. 569–577.Google Scholar
  10. 10.
    Eliseev, D.P., Povyshenie vibroustoichivosti mikromekhanicheskogo giroskopa RR-tipa. Dis. kand. tekhn. nauk. (Increasing Vibration Resistance of RR-type Micromechanical Gyro, Cand. Eng. Sci. Dissertation), St. Petersburg, 2015.Google Scholar
  11. 11.
    Nekrasov, Ya.A., Moiseev, N.V., Belyaev, Ya.V., Pavlova, S.V., and Lyukshonkov, R.G., Influence of Translational Vibrations, Shocks and Acoustic Noise on MEMS Gyro Performance, Gyroscopy and Navigation, 2017, Vol. 8, No. 1, pp. 31–37.CrossRefGoogle Scholar
  12. 12.
    Moiseev, N.V., Mikromekhanicheskii giroskop kompensatsionnogo tipa s rasshirennym diapazonom izmereniya (Torque-to-balance MEMS Gyro with Expanded Range of Measurements), Diss. Cand. Eng. Sc. (2003), St. Petersburg, 2015.Google Scholar
  13. 13.
    Kovalev, A.S., Upravlenie pervichnymi i vtorichnymi kolebaniyami mekromekhanicheskogo giroskopa (Control of Primary and Secondary Oscillations of MEMS Gyro), Diss. Cand. Eng. Sc. (2003), St. Petersburg, 2008, 157 pages.Google Scholar
  14. 14.
    Sinel’nikov, A.E., Nizkochastotnye lineinye akselerometry. Metody i sredstva poverki i graduirovki (Low-frequency Linear Accelerometers. Methods and Means for Verification and Calibration), Izdatel’stvo standartov, Moscow, 1979, 176 pages.Google Scholar
  15. 15.
    Untilov, A.A., Issledovanie i razrabotka uprugogo podvesa chuvstvitel’nogo elementa mikromekhanicheskogo giroskopa (Research and Development of Elastic suspension for MEMS Gyro Sensor), Diss. Cand. Eng. Sc. (2003), St. Petersburg, 2005, 147 pages.Google Scholar
  16. 16.
    Sinelnikov, A.E. and Ibragimov, I.Kh., Ustroistvo dlya vosproizvedeniya uskoreniya (Acceleration Simulation Device), Certificate of Authorship No. 398873, USSR, 1973.Google Scholar
  17. 17.
    Gryazin, D.G., Skalon, A.I., and Velichko, O.O., Sposob otsenki dinamicheskikh kharakteristik datchikov uglovoi skorosti (Method to Estimate Dynamic Characteristics of Angular Rate Sensors), Patent RF 2526508, Concern CSRI Elektropribor, 2014.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. A. Baranova
    • 1
  • M. I. Evstifeev
    • 2
  • D. P. Eliseev
    • 2
  1. 1.ITMO UniversitySaint PetersburgRussia
  2. 2.Concern CSRI Elektropribor, JSCSaint PetersburgRussia

Personalised recommendations