Gyroscopy and Navigation

, Volume 8, Issue 4, pp 279–286 | Cite as

Improving the design of moving electrode in MEMS RR-type gyro

  • M. I. Evstifeev
  • D. P. Eliseev


It has been demonstrated that variation in the flat shape of a MEMS gyro inertial body under inertial loads results in gap variation in capacitance transducer of sense oscillations. An algorithm for improving the design parameters of moving electrodes is proposed to keep the conversion factor of the gyro insensitive to translational vibrations directed normally to the disc plane of the inertial body, taking into account the flat shape loss.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peshekhonov, V.G., Nesenyuk, L.P., and Gryazin, D.G., Mikromekhanicheskiye inertsialnye preobrazovateli. Sovremennoe sostoyanie i perspektivy razvitiya (Micromechanical inertial converters. Current status and development prospects), Mekhatronika, Avtomatizatsiya, Upravlenie, 2009, no. 3, pp. 28–32.Google Scholar
  2. 2.
    Eliseev, D.P., Povyshenie vibroustoichivosti mikromekhanicheskogo giroskopa RR-tipa. Dis. kand. tekhn. nauk. (Increasing Vibration Resistance of RR-type Micromechanical Gyro, Cand. Eng. Sci. Dissertation), St. Petersburg, 2015.Google Scholar
  3. 3.
    Geen, J., Progress in Integrated Gyroscopes, IEEE A&E Systems magazine, November 2004, pp. 12–17.Google Scholar
  4. 4.
    Weinberg, H., Gyro Mechanical Performance: The Most Important Parameter, technical article MS-2158. Analog Devices, Inc., September 2011, pp. 1–5.Google Scholar
  5. 5.
    Clark, T.-C. Nguyen, The Harsh Environment Robust Micromechanical Technology (HERMiT) Program: Success and Some Unfinished Business, Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International, June 2012, pp. 1–3.Google Scholar
  6. 6.
    Habibi, S., Cooper, S.J., Stauffer, J.-M., and Dutoit, B., Gun Hard Inertial Measurement Unit Based on MEMS Capacitive Accelerometer and Rate Sensor, Proceedings of IEEE/ION PLANS 2008, May 6–8 2008, pp. 232–237.Google Scholar
  7. 7.
    Sang Won Yoon, Vibration Isolation and Shock Protection for MEMS, University of Michigan, Ph.D. Dissertation, 2009.Google Scholar
  8. 8.
    ADXRS646. High Stability, Low Noise Vibration Rejecting Yaw Rate Gyroscope, data sheet, Analog Devices, 2012.Google Scholar
  9. 9.
    Kuang, J., and Geen, J.A., Inertial Sensors With Reduced Sensitivity To Quadrature Errors And Micromachining Inaccuracies, US patent no. 8266961, appl. no. 12/535477, published 18.09.2012.Google Scholar
  10. 10.
    Hartzell, A.L., da Silva, M.G., and Shea, H.R., MEMS Reliability, Springer Science. 2011.CrossRefGoogle Scholar
  11. 11.
    Evstifeev, M.I., Eliseev, D.P., Kovalev, A.S., and Rozentsvein, D.V., Studying the dynamics of MEMS gyro under mechanical effects, Nauchno-tekhnicheskii vestnik SPbGU ITMO, 2011, pp. 49−58.Google Scholar
  12. 12.
    Kovalev, A.S., Eliseev, D.P., and Belogurov, A.A., Analysis of refined mathematical model of RR-type MEMS gyro subjected to linear vibrations, Materialy XIV konferentsii molodykh uchenykh “Navigatsia i Upravlenie Dvizheniem” (Proceedings of the 14th Conference of Young Scientists “Navigation and Motion Control”), 2012, pp. 435–439.Google Scholar
  13. 13.
    Peshekhonov, V.G., Evstifeev, M.I., Nekrasov, Ya.A., Moiseev, N.V., and Pavlova, S.V., Russian MEMS RRtype gyro. Current status and prospects, Informatsionnoe Protivodeistvie Ugrozam Terrorizma, 2012, no. 19, pp. 108–114.Google Scholar
  14. 14.
    Evstifeev, M.I. and Eliseev, D.P., MEMS vibratory gyroscope, RF patent 2561006, MPK G01C 19/56, Byulleten no. 23, 2015.Google Scholar
  15. 15.
    Evstifeev, M.I., and Eliseev, D.P., Matematicheskaya model' emkostnykh grebenchatykh preobrazovatelei mikromekhanicheskogo giroskopa RR-tipa s uchetom vibratsionnykh vozdeistvii e Sensors with Account for Vibrations), Nauchno-tekhniche(Mathematical Model of RRtype Micromechanical Gyro Capacitive Comb-Typskii vestnik SPbGU ITMO, 2016, vol. 16, no. 3, pp. 541–549. doi 10.17586/2226-1494-2016-16-3-541- 549Google Scholar
  16. 16.
    PTC: Technology Solutions for Ongoing Products & Service Advantage [Online], Available: http:// Scholar
  17. 17.
    Iossel, Yu. Ya., Kochanov, E.S., and Strunskii, M.G., Raschet elektricheskoi emkosti (Calculation of Electrical Capacitance), 2nd edition, revised, Leningrad, Lenizdat, 1981.Google Scholar
  18. 18.
    Nekrasov, Ya.A., Pavlova, S.V., and Moiseev, N.V., Improving the performance of the Russian RR-type MEMS gyro, 21st St.Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2014, pp. 226–235.Google Scholar
  19. 19.
    Nekrasov, Ya.A., Methody povysheniya tochnosti s''oma informatsii v mikromekhanicheskikh giroskopakh (Methods of Information Retrieval Accuracy Enhancement in MEMS Gyros), Cand. Eng. Sci. dissertation, St. Petersburg, 2007.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Concern CSRI ElektropriborJSCSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations