Advertisement

Gyroscopy and Navigation

, Volume 8, Issue 3, pp 173–180 | Cite as

Aircraft navigation using MEMS IMU and ground radio beacons

  • G. I. Emel’yantsev
  • A. P. Stepanov
  • B. A. Blazhnov
Article
  • 49 Downloads

Abstract

Navigation of a small-sized aircraft is discussed using integrated data from MEMS-based IMU and receiver of ground radio beacon signals within an integrated tightly-coupled orientation and navigation system (IONS). IONS algorithms and errors in orientation and navigation parameters are considered both during prestart IMU error calibration with external aiding over a limited time interval and during simulation of aircraft flight along a preset path. Data in IONS are integrated using the extended Kalman filter (EKF). In simulation modeling of IONS functioning algorithms in Matlab (Simulink) we used data of bench tests of MEMS sensors developed by Elektropribor.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peshekhonov, V.G., Gyroscopic navigation systems: Current status and prospects, Gyroscopy and Navigation, 2011, vol. 2, no. 3, pp. 111–118.CrossRefGoogle Scholar
  2. 2.
    Evstifeev, M.I., Eliseev, D.P., and Chelpanov, I.B., Enhancing the mechanical resistance of micromechanical gyros, Gyroscopy and Navigation, 2015, vol. 6, no. 2, pp. 115–123.CrossRefGoogle Scholar
  3. 3.
    Inertial Measurement Units on Micromechanical Sensors, IEEE A&E SYSTEMS MAGAZINE, OCTOBER 2008.Google Scholar
  4. 4.
    http://www.elektropribor.spb.ru/rufrset.htmlGoogle Scholar
  5. 5.
    http://www.isense.ru/rus/index.htmGoogle Scholar
  6. 6.
    Mezentsev, A.P., Frolov, E.N., Klimkin, M.Yu., and Mezentsev, O.A., Development, production and test results for a medium-accuracy MEMS INS AIST-320 based on Coriolis vibratory gyro AIST-100, 14th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, CSRI Elektropribor, 2007, pp. 9–18.Google Scholar
  7. 7.
    Coffee, J.R. and Maganty, P., An integrated DGPS/INS navigation system for a ballistic missile: Design and flight test results, Navigation: Journal of The Institute of Navigation, 1996, vol. 43, no. 3, pp. 273–293.CrossRefGoogle Scholar
  8. 8.
    http://www.military-informer.narod.ru/grad.htmlGoogle Scholar
  9. 9.
    Gai, E., Guiding munitions with a micromechanical INS/GPS system, 5th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, CSRI Elektropribor, 1998.Google Scholar
  10. 10.
    Minor, R.R. and Rowe, D.W., Utilization of a magnetic sensor to compensate a MEMS-IMU/GPS and despin strapdown on rolling missiles, United States Patent № 6,208,936. Mar. 27, 2001.Google Scholar
  11. 11.
    Blazhnov, B.A., Yemeliantsev, G.I., Koshaev, D.A., Semenov, I.V., Stepanov, A.P. et al., A Tightly Coupled Integrated Inertial Satellite System of Attitude and Navigation, 16th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, CSRI Elektropribor, 2009, pp. 182–190.Google Scholar
  12. 12.
    Vodicheva, L.V., Alievskaya, E.L., Koksharov, E.A., and Parysheva, Yu.V., Improving the accuracy of angular rate determination for spinning vehicles, Gyroscopy and Navigation, 2012, vol. 3, no. 3, 159–168.CrossRefGoogle Scholar
  13. 13.
    Zhbanov, Yu.K., Alekhova, E.Yu., Petelin, V.L., Slezkin, L.N., and Tereshkin, A.I., Scale factor correction of the strapdown angular rate pick-off of the fast rotating object, 18th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, CSRI Elektropribor, 2011, pp. 113–114.Google Scholar
  14. 14.
    Raspopov, V.Ya., Strapdown inertial navigation system for rotating flying vehicles, 20th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, CSRI Elektropribor, 2013.Google Scholar
  15. 15.
    Vander Velde, W., Cafarella, J., Tseng, H.-W., Dimos, G., and Upadhyay, T., GPS-based measurement of roll rate and roll angle of spinning platforms, USPatent № US2010/0117894 15.05.2010.Google Scholar
  16. 16.
    Emel’yantsev, G.I. and Stepanov, A.P., Integrirovannye inertsial’no-sputnikovye sistemy orientatsii i navigatsii (Integrated Inertial-Satellite Orientation and Navigation Systems), St. Petersburg: Concern CSRI Elektropribor, 2016.Google Scholar
  17. 17.
    Veremeenko, K.K., Zheltov, S.Yu., et al., Sovremennye informatsionnye tekhnologii v zadachakh navigatsii i navedeniya bespilotnykh manevrennykh letatel’nykh apparatov (Modern Information Technologies in Problems of Navigation and Guidance of Maneuverable Unmanned Aerial Vehicles), Krasil’shchikov, M.N., Sebryakov, G.G., Eds., Moscow: Fizmatlit, 2009.Google Scholar
  18. 18.
    Layh, T. and Gebre-Egziabher, D., A fault-tolerant integrated navigation system architecture for UAVs, Proceedings of the 2015 International Technical Meeting, ION ITM 2015, Danna Point, California, January, 6-28, 2015, pp.702–712.Google Scholar
  19. 19.
    Borsoev, V.A., Galeev, R.G., Grebennikov, A.V., and Kondrat’ev, A.S., Using GLONASS/GPS pseudolites in aircraft landing systems, Nauchnyi vestnik MGTU GA, 2011, no. 164, pp. 17–23.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • G. I. Emel’yantsev
    • 1
    • 2
  • A. P. Stepanov
    • 1
    • 2
  • B. A. Blazhnov
    • 1
  1. 1.Concern CSRI ElektropriborJSCSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations