Advertisement

Gyroscopy and Navigation

, Volume 8, Issue 1, pp 58–62 | Cite as

Suboptimal algorithms for identification of navigation sensor errors described by Markov process

  • V. A. Tupysev
  • N. D. Kruglova
  • A. V. Motorin
Article
  • 32 Downloads

Abstract

The paper discusses the algorithms identifying the parameters of Markov process correlation function based on maximum likelihood function method, least squares method, and approximation of sample characteristics. The algorithms are compared with the algorithms based on Bayesian approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rivkin, S.S., Ivanovskii, S.S., and Kostrov, A.V., Statisticheskaya optimizatsiya navigatsionnykh sistem (Statistical Optimization of Navigation Systems), Leningrad: Sudostroenie, 1989.Google Scholar
  2. 2.
    Stepanov, O. A., Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Part 1. Vvedenie v teoriyu otsenivaniya (Fundamentals of the Estimation Theory with Applications to the Problems of Navigation Information Processing. Part 1. Introduction to the Estimation Theory), St. Petersburg: CSRI Elektropribor, 2010.Google Scholar
  3. 3.
    Stepanov, O. A., Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Part 2. Vvedenie v teoriyu fil’tratsii (Fundamentals of the Estimation Theory with Applications to the Problems of Navigation Information Processing. Part 2. Introduction to the Filtering Theory), St. Petersburg: CSRI Elektropribor, 2012.Google Scholar
  4. 4.
    Litvinenko, Yu.A. and Tupysev, V.A., Comparative analysis of different types of federated filters as applied to the problems of navigation data processing, 22nd St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, CSRI Elektropribor, 2015, pp. 101–105.Google Scholar
  5. 5.
    Brown, R.G., Integrated navigation systems and Kalman filtering: A perspective, Navigation, USA, 1972-1973, vol. 19, no.4.Google Scholar
  6. 6.
    Grewal, M.S. and Andrews, A.P., Kalman Filtering: Theory and Practice, Prentice Hall, New Jersey, 1993.zbMATHGoogle Scholar
  7. 7.
    Gibbs, Bruce P., Advanced Kalman filtering, leastsquares and modeling: A practical handbook, John Wiley&Sons, Inc., 2011.CrossRefGoogle Scholar
  8. 8.
    Carlson, N.A., Federated filter for fault-tolerant integrated navigation systems, AGARDograph 331, Aerospace Navigation Systems, June 1995, pp. 265–280.Google Scholar
  9. 9.
    Carlson, N.A. and Berarucci, M.P., Federated Kalman filter simulation results, Navigation, Journal of Institute of Navigation, 1994, vol. 41, no.3, pp. 297–321.Google Scholar
  10. 10.
    Vaisgant, I.B. and Litvinenko, Yu.A., Errors in navigation parameters of medium accuracy platform inertial systems depending on latitude, Izvestiya vuzov. Priborostroenie, 2002, no.9.Google Scholar
  11. 11.
    Tupysev, V.A., Stepanov, O.A., Loparev, A.V., and Litvinenko, Yu.A., Guaranteed estimation in the problems of navigation information processing, IEEE Multi-Conference on Systems and Control, 2009, Saint Petersburg, Russia, pp. 1672–1677.Google Scholar
  12. 12.
    Sergienko, A.B., Tsifrovaya obrabotka signalov (Digital Signal Processing), St. Petersburg: Piter, 2002.Google Scholar
  13. 13.
    Litvinenko, Yu.A. and Gosteva, N.D., Studying the drift model of one degree-of-freedom floating gyro, Materialy 15 konferentsii molodykh uchenykh “Navigatsiya i Upravlenie Dvizheniem” (Proc. of the 15th Conference of Young Scientists “Navigation and Motion Control”), CSRI Elektropribor, St. Petersburg, 2013, p.126.Google Scholar
  14. 14.
    Sveshnikov, A.A., Prikladnye metody teorii sluchainykh funktsii (Applied Methods of Theory of Random Functions), Leningrad, 1961.Google Scholar
  15. 15.
    D’yakonov, V.P., Mathematical and spectral analysis of real oscillograms in Matlab, Kontrol’no-izmeritel’nye pribory i sistemy, 2010, no. 2.Google Scholar
  16. 16.
    Stepanov, O.A., Sokolov, A.I., and Dolnakova, A.S., Analysis of potential accuracy of estimating the parameters of random processes in navigation data processing, Materialy XII Vserossiiskogo soveshchaniya po problemam upravleniya (Proceedings of the 12th All-Russian Meeting on Control Problems), Moscow: Trapeznikov institute of Control Sciences of Russian Academy of Sciences, 2014, pp. 3324–3337.Google Scholar
  17. 17.
    Motorin, A.V. and Stepanov, O.A., Designing an error model for navigation sensors using Bayesian approach, Proc. 2015 IEEE International Conference on Multisensor Fusion and Integration, 2015, pp. 54–58.Google Scholar
  18. 18.
    Motorin, A.V., Stepanov, O.A., and Vasiliev, V.A., Identification of sensor errors by using of nonlinear filtering, IFAC-PapersOnLine, vol. 48, issue 11, Proc. of 1st Conference on Modeling, Identification and Control of Nonlinear Systems. MICNON-2015, pp. 808–813.Google Scholar
  19. 19.
    D’yakonov, V.P., Matlab 6.5 SP1/7 + Simulink 5/6®: Osnovy primeneniya (Matlab 6.5 SP1/7 + Simulink 5/6® Fundamentals of Use), Moscow: SOLON-Press, 2005.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Tupysev
    • 1
  • N. D. Kruglova
    • 1
  • A. V. Motorin
    • 1
    • 2
  1. 1.Concern CSRI Elektropribor, JSCSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations