Advertisement

Gyroscopy and Navigation

, Volume 8, Issue 1, pp 51–57 | Cite as

Accuracy of sensor bias estimation and its relationship with Allan variance

  • O. A. Stepanov
  • I. B. Chelpanov
  • A. V. Motorin
Article
  • 58 Downloads

Abstract

The paper discusses the relationship between Allan variance and error variance of sensor bias estimate obtained by averaging over a certain period. Allan variance is shown to coincide with this variance in some cases. Bias estimation accuracy can be improved using nonlinear filtering methods in the conditions of uncertain error model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sveshnikov, A.A., Prikladnye zadachi teorii sluchainykh funktsii (Applied Problems of Theory of Random Functions), Nauka, 1968.Google Scholar
  2. 2.
    Bendat, J. and Piersol. A., Random Data: Analysis and Measurement Procedures, Wiley, 2000.zbMATHGoogle Scholar
  3. 3.
    Prokhorov, S.A., Prikladnoi analiz sluchainykh protsessov (Applied Analysis of Applied Processes), Samara, 2007.Google Scholar
  4. 4.
    Shevlyakov, G.L. and Lyubomischenko, N.S., Robust estimation of time series spectra: Brief overview of methods and algorithms, Materialy XXIX konferentsii pamyati N.N. Ostryakova (Proceedings of the 29th Conference in Memory of N.N. Ostryakov), 2014.Google Scholar
  5. 5.
    Sergienko, A.B., Tsifrovaya obrabotka signalov (Digital Signal Processing), St. Petersburg, 2002.Google Scholar
  6. 6.
    Stepanov, O. A., Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Part 2. Vvedenie v teoriyu fil’tratsii (Fundamentals of the Estimation Theory with Applications to the Problems of Navigation Information Processing. Part 2. Introduction to Filtering Theory), St. Petersburg: CSRI Elektropribor, 2012.Google Scholar
  7. 7.
    Allan, D.W., Statistics of atomic frequency standards, Proc. of the IEEE, 1996, 54(2), pp. 221–230.CrossRefGoogle Scholar
  8. 8.
    Howe, D., Allan, D., and Barnes, J., Properties of signal sources and measurement methods, Proceedings of the 35th Annual Symposium on Frequency Control, 1981, pp. 464–469.Google Scholar
  9. 9.
    Tehrani, M.M., Ring laser gyro data analysis with cluster sampling technique, Proceedings of SPIE, 1983, vol. 412.Google Scholar
  10. 10.
    Ng, L.C. and Pines, D.J., Characterization of ring laser gyro performance using the Allan variance method, Journal of Guidance, Control, and Dynamics, 1997, vol. 20, no. 1, pp. 211–214.CrossRefzbMATHGoogle Scholar
  11. 11.
    Kucherkov, S.G. et al., Using Allan variance in characterization of MEMS gyro, Giroskopyia i Navigatsiya, 2003, no. 2 (41), pp. 98–104.Google Scholar
  12. 12.
    Siraya, T.N., Allan variance as an estimate of measurement error, Giroskopiya i Navigatsiya, 2010, no. 2(69), pp. 29–36.Google Scholar
  13. 13.
    Krobka, N.N., Differential methods of identifying gyro noise structure, Gyroscopy and Navigation, 2011, no. 3, pp. 126–137.CrossRefGoogle Scholar
  14. 14.
    Allan, D.W., Historicity, strengths, and weaknesses of Allan variances and their general applications, 22nd St. Petersburg International Conference on Integrated Navigation Systems, Panel discussion “Methods for Navigation Sensor Performance Determination”, St. Petersburg: Elektropribor, 2015, pp. 507–524.Google Scholar
  15. 15.
    Krobka, N.I., On the topology of the Allan variance graphs and typical misconceptions in the interpretation of the structure of the gyro noise (Based on the examples of reports at the St. Petersburg International Conference on Integrated Navigation Systems), 22nd St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2015, pp. 525–550.Google Scholar
  16. 16.
    Kutovoy, V.M., Kutovoy, D.A., Maslova, O.I., Perepelkina, S.Yu., Sitnikov, P.V., and Fedotov, A.A., Use of Allan variance for practical assessment of noise structure of SINS sensing elements, 22nd St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2015, pp. 249–252.Google Scholar
  17. 17.
    Stepanov, O.A., Primenenie teorii nelineinoi fil’tratsii v zadachakh obrabotki navigatsionnoi informatsii (Nonlinear Filtering Theory as Applied to Navigation Data Processing), St. Petersburg, CSRI Elektropribor, 2003.Google Scholar
  18. 18.
    Stepanov, O.A., Dolnakova, A.S., and Sokolov, A.I., Analysis of potential accuracy of estimating random process parameters in navigation data processing, XII Vserossiiskoe soveshchanie po problemam upravleniya (12th Russian Meeting on Control Problems), Russia, Moscow, 16−19 June 2014.Google Scholar
  19. 19.
    Motorin, A.V. and Stepanov, O.A., Identification of sensor errors: Allan variance vs nonlinear filtering, 21st St. Petersburg International Conference on Integrated Navigation Systems, 2014, pp. 123–128.Google Scholar
  20. 20.
    Stepanov, O.A., Motorin, A.V., Vasil’ev, V.A., and Toropov, A.B., Using nonlinear filtering methods in constructing sensor error models and map errors, Materialy XXIX konferentsii pamyati N.N. Ostryakova (Proceedings of the 29th Conference in Memory of N.N. Ostryakov), 2014.Google Scholar
  21. 21.
    IEEE Std 528-2001, IEEE Standard for Inertial Sensor Terminology, IEEE Aerospace and Electronic Systems Society, 2001.Google Scholar
  22. 22.
    IEEE std. 1554–2005, IEEE Recommended Practice for Inertial Sensor Test Equipment, Instrumentation, Data Acquisition, and Analysis. IEEE Aerospace and Electronic Systems Society, 2005.Google Scholar
  23. 23.
    Stepanov, O.A. and Toropov, A.B., Using sequential Monte-Carlo methods and analytical integration in navigation data processing, XII Vserossiiskoe soveshchanie po problemam upravleniya (12th Russian Meeting on Control Problems), Russia, Moscow, 16–19 June 2014.Google Scholar
  24. 24.
    Motorin, A.V., Toropov, A.B., and Stepanov, O.A., Multialternative filtering as applied to estimation of sensor error model, Materialy XVII konferentsii molodykh uchenykh “Navigatsiya i Upravlenie Dvizheniem” (Proceedings of the 17th Conference of Young Scientists “Navigation and Motion Control”), 2015, pp. 267–274.Google Scholar
  25. 25.
    Bucy, R.S. and Senne, K.D., Digital synthesis of nonlinear filters, Automatica, 1971, no. 7(3), pp. 287–298.CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. A. Stepanov
    • 1
    • 2
  • I. B. Chelpanov
    • 1
    • 2
  • A. V. Motorin
    • 1
    • 2
  1. 1.Concern CSRI Elektropribor, JSCSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations