Gyroscopy and Navigation

, Volume 8, Issue 1, pp 68–79 | Cite as

The state of the art in the development of onboard gravity gradiometers

  • M. I. EvstifeevEmail author


The state of the art in the development of onboard gravity gradiometers used for mineral exploration and space missions is discussed; the results of their operation are analyzed. Gradiometer designs using atom interferometry are considered. Prospects for the development of gravity gradiometry for various applications are outlined.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    DiFrancesco, D., Meyer, T., Christensen, A., and Fitz-Gerald, D., Gravity gradiometry–today and tomorrow, 11th SAGA Biennial Technical Meeting and Exhibition, Swaziland, September 2009, pp. 80–83.Google Scholar
  2. 2.
    Nerem, R., Jekeli, C., and Kaula, W., Gravity field determination and characteristics: Retrospective and prospective, Geophysical Research, 1995, vol.100, no. B8, pp. 15,053–15,074.CrossRefGoogle Scholar
  3. 3.
    Vol’fson, G.B., State and perspectives of gravity gradiometry, in Primenenie graviinertsial’nykh tekhnologii v geofizike (Gravity-Inertial Technologies in Geophysics), Collected articles and papers, St. Petersburg: Elektropribor, 2002, pp. 90–105).Google Scholar
  4. 4.
    Vasin, M.G. and Popkov, D.I., Current problems of onboard gravity gradiometry, in Gravimetriya i geodeziya (Gravimetry and Geodesy), Brovar, B.V., Ed., Moscow: Nauchnyi mir, 2010, pp. 570–584.Google Scholar
  5. 5.
    Jekeli, C., 100 Years of Gravity Gradiometry, Lecture presented in Geological Science 781, Gravimetry, 27 November 2007.Google Scholar
  6. 6.
    Nabighian, M.N., Ander, M.E., Grauch, V.J.S, Hansen, R.O., LaFehr, T.R., Li, Y., Pearson, W.C., Peirce, J.W., Phillips, J.D., and Ruder, M.E., 75th Anniversary. Historical development of the gravity method in exploration, Geophysics, 2005, vol. 70, no. 6, pp. 63ND–89ND.CrossRefGoogle Scholar
  7. 7.
    Soroka, A.I., On the development of onboard meters of geopotential second derivatives, in Gravimetriya i geodeziya (Gravimetry and Geodesy), Brovar, B.V., Ed., Moscow: Nauchnyi mir, 2010, pp. 300–310.Google Scholar
  8. 8.
    Peshekhonov, V.G., Underwater navigation problems, Morskoi sbornik, 2006, no. 10, pp. 22–24).Google Scholar
  9. 9.
    Dzhandzhgava, G.I. and Avgustov, L.I., Map-aided navigation problems. Results of investigations, Proc. of the 6th Russian Scientific and Technical Conference “Sovremennoe sostoyanie i problemy navigatsii i okeanografii” (Modern State and Problems of Navigation and Oceanography), NO-2007, St. Petersburg: GNINGI, 2007, pp. 43–49.Google Scholar
  10. 10.
    Dransfield, M., Airborne gravity gradiometry in the search for mineral deposits, Proc. of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 2007, pp. 341–354.Google Scholar
  11. 11.
    DiFrancesco, D., Advances and challenges in the development and deployment of gravity gradiometer systems, EGM 2007 International Workshop Innovation in EM, Grav and Mag Methods: A new Perspective for Exploration, Capri, Italy, April 15–18, 2007.Google Scholar
  12. 12.
    Albertella, A., Migliaccio, F., and Sansó, F., GOCE: The Earth gravity field by space gradiometry, Celestial Mechanics and Dynamical Astronomy, May 2002, vol. 83, is. 1–4, pp. 1–15.CrossRefzbMATHGoogle Scholar
  13. 13.
    Rummel, R., Balmino, G., Johannessen, J., Visser, P., and Woodworth, P., Dedicated gravity field missions–principles and aims, J. Geodynamics, 2002, no. 33, pp. 3–20.CrossRefGoogle Scholar
  14. 14.
    Touboul, P., Foulon, B., Christophe, B., and Marque, J.P., CHAMP, GRACE, GOCE instruments and beyond, geodesy for planet Earth, International Association of Geodesy Symposia 136, 2012, pp. 215–221.Google Scholar
  15. 15.
    Freeden, W., Michel, V., and Nutz, H., Satellite-tosatellite tracking and satellite gravity gradiometry, J. Engineering Mathematics, 2002, no. 43, pp. 19–56.CrossRefzbMATHGoogle Scholar
  16. 16.
    Iafolla, V., Nozzoli, S., and Fiorenza, E., One axis gravity gradiometer for the measurement of Newton’s gravitational constant G, Physics Letters, 2003, no. A 318, pp. 223–233.Google Scholar
  17. 17.
    Kasevich, M., Donnelly, C., and Overstreet, C., Prospects for improved accuracy in the determination of G using atom interferometry, Depts. of Physics, Applied Physics and EE Stanford University, 2014.Google Scholar
  18. 18.
    Paik, H., Tests of general relativity in Earth orbit using a superconducting gravity gradiometer, Advances in Space Research, 1989, no. 9, pp. 41–50.CrossRefGoogle Scholar
  19. 19.
    Ogorodova, L.V., Vysshaya geodesia. Part 3. Teoreticheskaya geodesiya (Higher Geodesy. Theoretical Geodesy), Moscow: Geodesy, 2006.Google Scholar
  20. 20.
    Peshekhonov, V.G., Nesenyuk, L.P., Starosel’tsev, L.P., and Elinson, L.S., Sudovye sredstva izmereniya parametrov gravitatsionnogo polya Zemli (Shipborne Aids Measuring the Parameters of the Earth Gravity Field), Leningrad: Rumb, 1989.Google Scholar
  21. 21.
    Mumaw, G., Marine 3D full tensor gravity gradiometry. The first five years, Hydro International, September 2004, pp. 38–41.Google Scholar
  22. 22.
    Starosel’tsev, L.P., Analysis of requirements to gyroscopic stabilization system of gravity gradiometer, Giroskopiya i Navigatsiya, 1995, no. 3, pp. 30–33.Google Scholar
  23. 23.
    Nesenyuk, L.P., Starosel’tsev, L.P., and Brovko, L.N., Determination of deflection of verticals using inertial navigation systems, Voprosy Korablestroeniya. Seriya “Navigatsiya i Giroskopiya”, 1980, no. 46, pp. 16–22. From the book Pamyati professora L.P. Nesenyuka. Izbrannye trudy i vospominaniya (In Memory of Professor Nesenyuk. Selected Works and Memories), St. Petersburg, 2010, pp. 63–68.)Google Scholar
  24. 24.
    Maleev, P.I. and Kapustin, I.V., Navigation aids of foreign strategic submarines, in Proc. of the 6th Russian Scientific and Technical Conference “Sovremennoe sostoyanie i problemy navigatsii i okeanografii” (Modern State and Problems of Navigation and Oceanography), NO-2007, St. Petersburg: GNINGI, 2007, pp. 132–139).Google Scholar
  25. 25.
    Gerber, M.A., Gravity gradiometry: Something new in inertial navigation, Astronautics and Aeronautics, 1978, vol.16, pp.18–26.Google Scholar
  26. 26.
    Trageser, M., Floated gravity gradiometer, IEEE Transactions on Aerospace and Electronic Systems, 1984, vol. 20, no.4.Google Scholar
  27. 27.
    Peshekhonov, V.G. and Vol’fson, G.B., Solution to the problem of designing a gravity variometer for operation on a moving platform, Doklady Akademii Nauk, 1996, vol. 351, no. 6, pp. 766–768.Google Scholar
  28. 28.
    Volfson, G.B., Methods to Solve the Problem of Creating an Onboard Gravity Variometer, D. Sci. Dissertation, 05.11.03, St. Petersburg, 1997.Google Scholar
  29. 29.
    Krasovskii, A.A., Methods to create onboard rotation gravity gradiometers, Oboronnaya tekhnika, 1983, no. 6, pp. 52–57.Google Scholar
  30. 30.
    Avgustov, L.I. and Soroka, A.I., Onboard gravity variometer. Development experience and bench test results, Mekhatronika, avtomatizatsiya, upravlenie, 2009, no. 3, pp. 51–56.Google Scholar
  31. 31.
    Korchak, V., Tuzhikov, E., and Bocharov, L., American program “Critical defence technologies”. Characteristics and contents analysis, Elektronika. Nauka. Tekhnologiya. Biznes, 2013, no. 5, pp. 134–148.Google Scholar
  32. 32.
    DeGregoria, A., Gravity Gradiometry and Map Matching: An Aid to Aircraft Inertial Navigation Systems, MSDegree Thesis, Air Force Institute of Technology, 2010, p.130.Google Scholar
  33. 33.
    Lee, J., Kwon, J.H., and Yu, M., Performance evaluation and requirements assessment for gravity gradient referenced navigation, Sensors, 2015, vol. 15, pp. 16833–16847.CrossRefGoogle Scholar
  34. 34.
    Richeson, J.A., Gravity Gradiometer Aided Inertial Navigation within NON-GNSS Environments, PhD Dissertation, University of Maryland, 2008.Google Scholar
  35. 35.
    Welker, T.C., Pachter, M., and Huffman, R.E., Gravity gradiometer integrated inertial navigation, Proc. 2013 European Control Conference (ECC), July 17-19, 2013, Zürich, Switzerland, pp. 846–851.Google Scholar
  36. 36.
    Bell, R.E., Gravity gradiometry. A formerly classified technique used to navigate ballistic-missile submarines now helps geologists search for resources hidden underground, Scientific American, June 1998, pp. 74–79.Google Scholar
  37. 37.
    Annecchione, M.A., Moody, M.V., Carroll, K.A., Dickson, D.B., and Main, B.W., Benefits of a high performance airborne gravity gradiometer for resource exploration, Proc. Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 2007, pp. 889–893.Google Scholar
  38. 38.
    Mims, J., Selman, D., Dickinson, J., Murphy, C., Mataragio, J., and Jorgensen, G., Comparison study between airborne and shipborne full tensor gravity gradiometry (FTG) Data, SEG Houston 2009 International Exposition and Annual Meeting, 2009, pp. 942–946.Google Scholar
  39. 39.
    McBarnet, A., Gravity gradiometry has graduated! OE Digital Edition, 2013. URL: http://www.oedigital. com/geoscience/item/3201-gravity-gradiometryhas-graduated.Google Scholar
  40. 40.
    DiFrancesco, D., Gravity gradiometry developments at Lockheed Martin, EGS -AGU -EUG Joint Assembly, Abstracts from the meeting held in Nice, France, April 2003, abstract #1069.Google Scholar
  41. 41.
    Murphy, C.A., Recent developments with Air-FTG®, Airborne Gravity 2010, Abstracts from the ASEG-PESA Airborne Gravity 2010 Workshop: Australia, 2010, pp. 142–151.Google Scholar
  42. 42.
    Dransfield, M., Le Roux, T., and Burrows, D., Airborne gravimetry and gravity gradiometry at Fugro airborne surveys, Airborne Gravity 2010, Abstracts from the ASEG-PESA Airborne Gravity 2010 Workshop: Australia, 2010, pp. 49–57.Google Scholar
  43. 43.
    Dransfield, M. and Christensen, A.N., Performance of airborne gravity gradiometers, The Leading Edge, August 2013, pp. 908–922.Google Scholar
  44. 44.
    Christensen, A.N., Dransfield, M.H., and Van Galder, C., Noise and repeatability of airborne gravity gradiometry, First break, April 2015, vol. 33, pp. 55–63.Google Scholar
  45. 45.
    Jekeli, C., Accuracy requirements in position and attitude for airborne vector gravimetry and gradiometry, Gyroscopy and Navigation, 2011, vol. 2, no. 3, pp. 164–169.CrossRefGoogle Scholar
  46. 46.
    Jekeli, C., Airborne gradiometry error analysis, Surveys in Geophysics, 2006, pp. 257–275.Google Scholar
  47. 47.
    Dransfield, M., Advances in airborne gravity gradiometry at Fugro airborne surveys, Proc. EGM 2010 International Workshop. Adding new value to Electromagnetic, Gravity and Magnetic Methods for Exploration, Capri, Italy, April 11–14, 2010.Google Scholar
  48. 48.
    Lumley, J.M., White, J.P., Barnes, G., Huang, D., and Paik, H.J., A superconducting gravity gradiometer tool for exploration, Proc. Society of Exploration Geophysics Meeting, San Antonio, September 2001.Google Scholar
  49. 49.
    Matthews, R., Mobile Gravity Gradiometry, PhD Dissertation, University of Western Australia, 2002.Google Scholar
  50. 50.
    Van Leeuwen, E., Three years of practical use of airborne gravity gradiometer, Geophysical Research Abstracts, 2003, vol. 5, p.22.Google Scholar
  51. 51.
    Tryggvason, B., Main, B., and French, B., A high resolution airborne gravimeter and airborne gravity gradiometer, Proc. Airborne Gravity 2004 Workshop, 2004, pp. 41–47.Google Scholar
  52. 52.
    Anstie, J., Aravanis, T., Johnston, P., Mann, A., Longman, M., Sergeant, A., Smith, R., Van Kann, F., Walker, G., Wells, G., and Winterflood, J., Preparation for flight testing the VK1 gravity gradiometer, Airborne Gravity 2010, Abstracts from the ASEG-PESA Airborne Gravity 2010 Workshop: Australia, 2010, pp. 5–12.Google Scholar
  53. 53.
    Chan, H.A. and Paik, H.J., Superconducting gravity gradiometer for sensitive gravity measurements. I. Theory, Phys. Rev. D, 1987, pp. 3551–3571.Google Scholar
  54. 54.
    Carroll, K.A., Hatch, D., and Main, B., Performance of the Gedex high-definition airborne gravity gradiometer, Airborne Gravity 2010, Abstracts from the ASEGPESA Airborne Gravity 2010 Workshop: Australia, 2010, pp. 37–43.Google Scholar
  55. 55.
    Airborne Gravity 2016 (W10), Adelaide, Australia, August 2016. URL: http://www.conference. Scholar
  56. 56.
    Moody, M., Paik, H., and Canavan, E., Three-axis superconducting gravity gradiometer for sensitive gravity experiments, Rev. Sci. Instrum. 73, 3957 (2002); URL: doi 10.1063/1.151179810. 1063/1.1511798CrossRefGoogle Scholar
  57. 57.
    Rummel, R., Yi, W., and Stummer, C., GOCE gravitational gradiometry, Journal of Geodesy, November 2011, vol. 85, no. 11, pp. 777–790.CrossRefGoogle Scholar
  58. 58.
    Brown, D., Mauser, L., Young, B., Kasevich, M., Rice, H.F., and Benischek, V., Atom interferometric gravity gradiometer system, Proc. 2012 IEEE/ION Position, Location and Navigation Symposium, PLANS-2012, pp. 30–37.CrossRefGoogle Scholar
  59. 59.
    Mahadeswaraswamy, C., Atom Interferometric Gravity Gradiometer: Disturbance Compensation and Mobile Gradiometry, PhD Dissertation, Stanford University, 2009.Google Scholar
  60. 60.
    Wu, X., Gravity Gradient Survey with a Mobile Atom Interferometer, PhD Dissertation, Stanford University, 2009.Google Scholar
  61. 61.
    Yu, N., Kohel, J.M., Ramerez-Serrano, J., Kellogg, J.R., Lim, L., and Maleki, L., Progress Towards a Space-borne Quantum Gravity Gradiometer, Jet Propulsion Laboratory, California Institute of Technology, 2005. URL: estc2005/papers/b1p5.1.pdfGoogle Scholar
  62. 62.
    McGuirk, J.M., High Precision Absolute Gravity Gradiometry with Atom Interferometry, PhD Dissertation, Stanford University, 2001.Google Scholar
  63. 63.
    Yu, N., Thompson, R.J., Kellogg, J.R., Aveline, D.C., Maleki, L., and Kohel, J.M., A transportable gravity gradiometer based on atom interferometry, NASA Tech Briefs, NASA’s Jet Propulsion Laboratory, Pasadena, California, May 2010, pp. 6–7.Google Scholar
  64. 64.
    Carraz, O., Siemes, C., Massotti, L., Haagmans, R., and Silvestrin, P., A spaceborne gravity gradiometer concept based on cold atom interferometers for measuring Earth’s gravity field, Microgravity Sci. Technol., 2014, pp. 139–145.Google Scholar
  65. 65.
    Kohel, J.M., Yu, N., Kellogg, J.R., Thompson, R.J., Aveline, D.C., and Maleki, L., Quantum gravity gradiometer development for space, Jet Propulsion Laboratory, California Institute of Technology. URL: estc2006/papers/b4p1.pdf.Google Scholar
  66. 66.
    Griggs, C.E., Paik, H.J., Moody, M.V., Han, S.-C., Rowlands, D.D., Lemoine, F.G., Shirron, P.J., and Li, X., Tunable superconducting gravity gradiometer for Mars climate, atmosphere and gravity field investigation, Proc. 46th Lunar and Planetary Science Conference, 2015, 1735.pdf.Google Scholar
  67. 67.
    Golden, H., McRae, W., and Veryaskin, A., Description of and results from a novel borehole gravity gradiometer, ASEG Extended Abstracts 2007, pp. 1–3.Google Scholar
  68. 68.
    Veryaskin, A., String gravity gradiometer: Noise, error analysis and applications, Geophysical Research Abstract, 2003, vol. 5, 01650.Google Scholar
  69. 69.
    Flokstra, J., Cupurus, R., Wiegerink, R.J., and Essen van, M.C., A MEMS based gravity gradiometer for future planetary missions, Cryogenics, 2009, vol. 49, p. 665–668.CrossRefGoogle Scholar
  70. 70.
    Liu, H., Pike, W.T., and Dou, G., Design, fabrication and characterization of a micro-machined gravity gradiometer suspension, Proc. IEEE SENSORS 2014, Valencia, 2–5 Nov. 2014, pp.1611–1614.CrossRefGoogle Scholar
  71. 71.
    Lenoir, B., Levy, A., Foulon, B., Christophe, B., Lamine, B., and Reynaud, S., Electrostatic accelerometer with bias rejection for gravitation and solar system physics, Advances in Space Research, 2011, vol. 48, is. 7, pp. 1248–1257.CrossRefGoogle Scholar
  72. 72.
    URL: Scholar
  73. 73.
    Neill, F., Potentials of wellbore gravity gradiometry, Neftegazovye tekhnologii, 2010, no. 6, pp. 20–24.Google Scholar
  74. 74.
    Vol’fson, G.B., Evstifeev, M.I., Rozentsvein, V.G., Semenova, M.P., Nikol’skii, Yu.I., Rokotyan, E.V., and Bezrukov, S.F., The new generation of gravity variometers for geophysical research, Geofizicheskaya apparatura, 1999, no. 102, pp. 90–105.Google Scholar
  75. 75.
    Kirkendall, B., Li, Y., and Oldenburg, D., Imaging cargo containers using gravity gradiometry, IEEE Transactions on Geoscience and Remote Sensing, 2007, vol. 45, no. 6, pp. 1786–1797.CrossRefGoogle Scholar
  76. 76.
    Vol’fson, G. B., Evstifeev, M. I., Kazantseva, O. S., Kalinnikov, I. I., Manukin, A. B., Matyunin, V. P., and Shcherbak, A.G., Gradiometric seismoreceiver with a magnetic suspension in the problems of operative earthquake forecasting, Seismic instruments, 2010, vol. 46, no. 3, pp. 265–274.CrossRefGoogle Scholar
  77. 77.
    Kalinnikov, I.I. and Matyunin, V.P., Early earthquake prediction in teleseismic zone–A reality, Doklady Akademii Nauk, 1992, vol. 232, no. 6, pp. 1068–1071.Google Scholar
  78. 78.
    Zlotnikov, D., Superior detective work: The promise of airborne gravity gradiometry, Earth Explorer, Energy Report, June 2011, pp. 5–7.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Concern CSRI Elektropribor, JSCSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations