Gyroscopy and Navigation

, Volume 7, Issue 4, pp 353–359 | Cite as

Path following control algorithms implemented in a mobile robot with omni wheels

  • J. Wang
  • A. Yu. Krasnov
  • Yu. A. Kapitanyuk
  • S. A. Chepinskiy
  • Y. Chen
  • H. Liu
Article

Abstract

The paper focuses on the problem of synthesis of path following control for a robot with omni wheels. Control is synthesized using differential geometry methods through nonlinear transformation of the initial dynamic model. The main results are presented in the form of nonlinear control algorithm and experimental data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguiar, A.P., Hespanha, J.P., and Kokotovic, P.V., Path-following for nonminimum phase systems removes performance limitations, IEEE Transactions on Automatic Control, 2005, vol. 50, pp. 234–239.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Nielsen, C., Fulford, C., and Maggiore, M., Path following using transverse feedback linearization, Application to a maglev positioning system, American Control Conference, ACC’ 09, 2009, pp. 3045–3050.Google Scholar
  3. 3.
    Breivik, M., and Fossen, T.I., Principles of guidancebased path following in 2D and 3D, Proceedings of the IEEE Conference on Decision and Control, Seville, Spain, 2005. pp. 627–634.Google Scholar
  4. 4.
    Lee, T., Leok, M., and McClamroch, N.H., Geometric tracking control of a quadrotor UAV on SE(3), Proceedings of the IEEE Conference on Decision and Control, 2010, pp. 5420–5425.Google Scholar
  5. 5.
    Burdakov, S.F., Miroshnik, I.V., and Stel’makhov, R.E., Sistemy upravleniya dvizheniem kolesnykh robotov (Motion Control Systems of Wheeled Robots), St. Petersburg: Nauka, 2001.Google Scholar
  6. 6.
    Miroshnik, I.V., Soglasovannoe upravlenie mnogokanal’nymi sistemami (Coordinated Control of Multichannel Systems), Leningrad: Energoatomizdat, 1990.Google Scholar
  7. 7.
    Miroshnik, I.V., Nikiforov, V.O., and Fradkov, A.L., Nelineinoe i adaptivnoe upravlenie slozhnymi dinamicheskimi sistemami (Nonlinear and Adaptive Control of Complex Dynamic Systems), St. Petersburg: Nauka, 2000.Google Scholar
  8. 8.
    Miroshnik, I.V. and Chepinskiy, S.A., Control of multilink kinematic mechanisms, Nauchno-Tekhnicheskii vestnik SPbGU ITMO, 2001, no. 3 (3), pp. 144–149.Google Scholar
  9. 9.
    Miroshnik, I.V. and Chepinskiy, S.A., Trajectory control of nontrivial kinematic mechanisms, Nauchno-Tekhnicheskii vestnik SPbGU ITMO, 2004, no. 3 (14), pp. 5–10.Google Scholar
  10. 10.
    Kapitanyuk, Yu.A. and Chepinskiy, S.A., Control of mobile robot motion along a predefined piecewisesmooth path, Giroskopiya i Navigatsiya, 2013, no. 2, pp. 42–52.Google Scholar
  11. 11.
    Kapitanyuk, Yu.A. and Chepinskiy, S.A., Control of multichannel dynamic system along piecewise-smooth path, Izv. Vuzov. Priborostroenie, 2013, no. 4, pp. 65–70.Google Scholar
  12. 12.
    Kapitanyuk, Y.A., Chepinskiy, S.A., and Kapitonov, A.A., Geometric path following control of a rigid body based on the stabilization of sets, in 19th IFAC World Congress, 2014.Google Scholar
  13. 13.
    Jian, W., Kapitanyuk, Y.A., Chepinskiy, S.A., Liu, D., and Krasnov, A.Yu., Geometric path following control in a moving frame, IFAC-PapersOnLine 48-11, 2015, pp. 150–155.Google Scholar
  14. 14.
    Miroshnik, I.V. and Chepinskiy, S.A., Trajectory control of underactuated mechanisms, 2nd IFAC Conference on Mechatronic Systems, Berkeley, 2002, pp. 959–1004.Google Scholar
  15. 15.
    Miroshnik, I.V. and Chepinskiy, S.A., Trajectory motion control of underactuated manipulators, Prepr. 7th IFAC Symposium on Robot Control, September 1–3, Wroclaw, Poland, 2003, pp. 105–110.Google Scholar
  16. 16.
    Miroshnik, I.V. and Nikiforov, V.O., Trajectory motion control and coordination of multilink robots, Prepr. 13th IFAC World Congress, San-Francisco, 1996, pp. 361–366.Google Scholar
  17. 17.
    Canudas de Wit, C., Siciliano, B., and Bastin, G., Theory of Robot Control, London: Springer-Verlag, 1996.CrossRefMATHGoogle Scholar
  18. 18.
    Isidori, A., Nonlinear Control Systems, Berlin: Springer-Verlag, 1995, 3rd edition.CrossRefMATHGoogle Scholar
  19. 19.
    Kapitanyuk, Y.A. and Chepinskiy, S.A., Trajectory control of mobile robot in changing environment, XIV Konferentsiya molodykh uchenykh “Navigatsiya i Upravlenie Dvizheniem” (14th Conference of Young Scientists “Navigation and Motion Control”, Peshekhonov, V.G., Ed, St. Petersburg, 2012, pp. 506–512.Google Scholar
  20. 20.
    Bushuev, A.B., Isaeva, E.G., Morozov, S.N., and Chepinskiy, S.A., Trajectory control of multichannel dynamic systems, Izv. Vuzov. Priborostroenie, 2009, vol. 52, no. 11, pp. 50–56.Google Scholar
  21. 21.
    Bobtsov, A.A., Kapitanyuk, Yu.A., Kapitonov, A.A., Kolyubin, S.A., Pyrkin, A.A., Chepinskiy, S.A., and Shavetov, S.V., Lego Mindstorms NXT technology in training students in adaptive control, Nauchno-Tekhnicheskii vestnik SPbGU ITMO, 2011, no. 1 (71), pp. 103–108.Google Scholar
  22. 22.
    Kim, D., Mnogomernye, nelineinye, optimal’nye i adaptivnye sistemy (Multidimensional, Nonlinear, Optimal, and Adaptive Systems), vol. 2, Moscow: Fizmatlit, 2004.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • J. Wang
    • 1
  • A. Yu. Krasnov
    • 2
  • Yu. A. Kapitanyuk
    • 3
  • S. A. Chepinskiy
    • 1
    • 2
  • Y. Chen
    • 2
  • H. Liu
    • 2
  1. 1.Hangzhou Dianzi UniversityZhejiangChina
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.Groningen UniversityGroningenNetherlands

Personalised recommendations