Gyroscopy and Navigation

, Volume 7, Issue 3, pp 205–213 | Cite as

Calibration of a precision SINS IMU and construction of IMU-bound orthogonal frame

  • G. I. Emel’yantsev
  • B. A. Blazhnov
  • E. V. Dranitsyna
  • A. P. Stepanov
Article

Abstract

The paper focuses on construction of reference orthogonal frame bound with inertial measurement system of a strapdown inertial navigation system. Main points of the algorithm refining the FOG IMU calibration parameters in dynamic test bench conditions using the Kalman filter and relying upon the system navigation solution are detailed. Time lags in FOG gyros and accelerometers’ measurement channels are estimated to the accuracy allowing construction of a 0.001 deg/h class navigation system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Volynskii, D.V., Dranitsyna, E.V., Odintsov, A.A., and Untilov, A.A., Calibration of fiber-optic gyros within strapdown inertial measurement units, Gyroscopy and Navigation, 2012, no. 3, pp. 194–200.CrossRefGoogle Scholar
  2. 2.
    Emel’yantsev, G.I., Dranitsyna, E.V., and Blazhnov, B.A., Test bed calibration of FOG-based strapdown inertial measurement unit, Gyroscopy and Navigation, 2012, no. 4, pp. 265–269.CrossRefGoogle Scholar
  3. 3.
    Klimkovich, B.V. and Tolochko, A.M., Navigationgrade SINS calibration in inertial operation mode, 22nd St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2015, pp. 272–278.Google Scholar
  4. 4.
    Nikolaev, S.G. and Ivshina, Yu.V., Calibration of strapdown inertial navigation systems by output signals of error model, Nauchno-tekhnicheskie vedomosti SPbGU 4’ (200). Informatika. Telekommunikatsiya. Upravlenie, 2014, pp. 95–105.Google Scholar
  5. 5.
    Bogatsky, I. and Leonets, O., A procedure for highaccuracy calibration of strapdown IMU on a low-accuracy turntable, Proceedings of 2010 International Symposium on Internal Technology and Navigation, 2010, pp. 294–310.Google Scholar
  6. 6.
    Izmailov, E.A., Lepe, S.N., Molchanov, A.V., and Polikovsky, E.F., Scalar method for calibrating and balancing strapdown inertial navigation systems, 15th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2008, pp. 151–159.Google Scholar
  7. 7.
    Atamanov, N.A., Troitsky, V.A., and Gusev, I.V., Strapdown inertial system sensor unit calibration, 12th St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2005, pp. 241–242.Google Scholar
  8. 8.
    Klimkovich, B.V. and Tolochko, A.M., Consideration for size effect in SINS calibration, Gyroscopy and Navigation, 2015, no. 3, pp. 230–235.CrossRefGoogle Scholar
  9. 9.
    IEEE Standard for Inertial Systems.Terminology. IEEE Std 1559-2009.Google Scholar
  10. 10.
    Kukhtevich, S.E., Rafel’son, V.F., and Fomichev, A.V., On SINS errors due to nonsynchronous measurement channels of angular rates and linear accelerations and geometry of accelerometer unit, Trudy Moskovskogo instituta elektromekhaniki i avtomatiki, 2011, no. 3, pp. 86–95.Google Scholar
  11. 11.
    Klimkovich, B.V. and Tolochko, A.M., Determination of time delays in measurement channels during SINS calibration in inertial mode, Giroskopiya i Navigatsiya, 2016, no. 2, pp. 137–144.Google Scholar
  12. 12.
    Anuchin, O.N. and Emel’yantsev, G.I., Integrirovannye sistemy orientatsii i navigatsii dlya morskikh podvizhnukh ob’ektov (Integrated Navigation and Orientation Systems for Marine Vehicles), St. Petersburg: CSRI Elektropribor, 1999.Google Scholar
  13. 13.
    Lur’e, A.I., Analiticheskaya mekhanika (Analytical Mechanics), Moscow, 1961.Google Scholar
  14. 14.
    Kozlov, A.V. and Sazonov, I.Yu., Calibration of inertial navigation systems on low-accuracy test beds with account for spaced proof masses of newton meters, Nauchnyi vestnik MGTU GA, 2013, no. 189, pp. 27–35.Google Scholar
  15. 15.
    Slysar’, V.M., Effect of instrumental sensors on SINS drift rate, Giroskopiya i Navigatsiya, 2007, no. 1, pp. 47–61.Google Scholar
  16. 16.
    GLONASS. Prinstipy postroeniya i funktsionirovaniya (GLONASS. Construction and Functioning Principles), Perov, A.I., Kharisov, V.N., Eds., Moscow: Radiotekhnika, 2010, 4th edition.Google Scholar
  17. 17.
    Solonina, A.I., Ulakhovich, D.A., and Yakovlev, L.A., Algoritmy i protsessy tsifrovoi obrabotki signalov (Algorithms and Processes of Digital Signal Processing), St. Petersburg: BKhV-Peterburg, 2002.Google Scholar
  18. 18.
    Zhao, G.L. et al., A closed-loop iterative calibration for marine high precision fiber optic gyro unit, Proceedings of 2010 International Symposium on Internal Technology and Navigation, 2010, pp. 86–93.Google Scholar
  19. 19.
    Stepanov, O.A., Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Part 1. Vvedenie v teoriyu otsenivaniya (Fundamentals of the Estimation Theory with Applications to the Problems of Navigation Information Processing. Part 1. Introduction to the Estimation Theory), St. Petersburg: CSRI Elektropribor, 2010, 2nd edition.Google Scholar
  20. 20.
    Fomichev, A.V., Kukhtevich, S.E., and Izmailov, E.A., Improving the software and mathematical support of BINS-SP-2 system by the flight test results, Trudy Moskovskogo instituta elektromekhaniki i avtomatiki, 2013, no. 7, pp. 19–29.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • G. I. Emel’yantsev
    • 1
    • 2
  • B. A. Blazhnov
    • 1
    • 2
  • E. V. Dranitsyna
    • 1
    • 2
  • A. P. Stepanov
    • 1
    • 2
  1. 1.Concern CSRI Elektropribor, JSCSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia

Personalised recommendations