Gyroscopy and Navigation

, Volume 7, Issue 2, pp 152–158 | Cite as

MEMS RR-type gyro with a moving electrode

  • M. I. Evstifeev
  • D. P. Eliseev
  • I. B. Chelpanov
Article

Abstract

A MEMS RR-type gyro design, immune to translational vibration and constant linear accelerations, is proposed. The gyro mechanical performance is improved through arranging the electrodes of the torquer and angular sensor on elastic suspension of certain stiffness. Design features of the proposed gyro are described, analytical formulas relating the natural frequencies of inertial body suspension and the electrode are given, along with the results of mathematical modeling of gyro dynamics on a vibrating foundation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Peshekhonov, V.G., Gyroscopic navigation systems. Current status and prospects, Gyroscopy and Navigation, 2011, vol. 3, no. 2, pp. 111–118.CrossRefGoogle Scholar
  2. 2.
    Peshekhonov, V.G. et al., Russian MEMS RR-type gyro. Current status and prospects, Informatsionnoe Protivodeistvie Ugrozam Terrorizma, 2012, no. 19, pp. 108–114.Google Scholar
  3. 3.
    Barbour, N. et al., Inertial MEMS system applications, Advances in Navigation Sensors and Integration Technology, RTO LECTURE SERIES 232, 2004, pp. 7-1–7-12.Google Scholar
  4. 4.
    Geen, J., Progress in integrated gyroscopes, IEEE A&E Systems magazine, November, 2004, pp. 12–17.Google Scholar
  5. 5.
    Weinberg, H., Gyro mechanical performance: The most important parameter, Technical Article MS-2158. Analog Devices, Inc. September, 2011, pp. 1–5.Google Scholar
  6. 6.
    Nguyen, C., The Harsh Environment Robust Micromechanical Technology (HERMiT) Program: Success and some unfinished business, Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International, June 2012, pp. 1–3.CrossRefGoogle Scholar
  7. 7.
    Evstifeev, M.I. and Chelpanov, I.B., Improving mechanical performance of MEMS gyros, Gyroscopy and Navigation, 2013, no. 1, pp. 119–133.Google Scholar
  8. 8.
    Evstifeev, M.I., Eliseev, D.P., Kovalev, A.S., and Rozentsvein, D.V., Results of MEMS gyro mechanical tests, Gyroscopy and Navigation, 2011, vol. 2, no. 3, pp. 119–125.CrossRefGoogle Scholar
  9. 9.
    Evstifeev, M.I., Kovalev, A.S., and Eliseev, D.P., Electromechanical model of RR-type MEMS gyro with consideration for the platform vibrations, Gyroscopy and Navigation, 2014, vol. 5, no. 3, pp. 172–178.CrossRefGoogle Scholar
  10. 10.
    Eliseev, D.P. and Kovalev, A.S., Studying the effect of linear vibrations on RR-type MEMS gyro with consideration for nonlinearities of capacitive sensors, Materialy XV konferenzii molodykh uchenykh “Navigatsiya i Upravlenie Dvizheniem” (Proceedings of the 15th Conference of Young Scientists “Navigations and Motion Control”), St. Petersburg: Elektropribor, 2014, pp. 406–412.Google Scholar
  11. 11.
    Evstifeev, M.I., Eliseev, D.P., and Chelpanov, I.B., Enhancing the mechanical resistance of micromechanical gyros, Gyroscopy and Navigation, 2015, vol. 6, no. 2, pp. 115–122.CrossRefGoogle Scholar
  12. 12.
    Habibi, S. et al., Gun Hard Inertial Measurement Unit based on MEMS capacitive accelerometer and rate sensor, Proceedings of IEEE/ION PLANS 2008, May 6–8 2008, pp. 232–237.Google Scholar
  13. 13.
    Sang Won Yoon, Vibration isolation and shock protection for MEMS, University of Michigan Ph.D. Dissertation, 2009.Google Scholar
  14. 14.
    Evstifeev, M.I. and Rozentsvein, D.V., Using multibody systems to improve vibration performance of MEMS gyros, Nauchno-Tekhnicheskii Vestnik Informatsionnykh Tekhnologii, Mekhaniki i Optiki, 2009, no. 1, pp. 40–44.Google Scholar
  15. 15.
    Nekrasov, Ya.A. et al., Improving the performance of the Russian RR-type MEMS gyro, 21st St. Petersburg International Conference on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2014, pp. 285–293.Google Scholar
  16. 16.
    Evstifeev, M.I. and Eliseev, D.P., MEMS vibratory gyroscope, RF patent 2561006, MPK G01C 19/56, Byulleten no. 23, 2015.Google Scholar
  17. 17.
    Evstifeev, M.I. and Rozentsvein, D.V., Analysis of contact actions in MEMS Gyros, Nauchno-Tekhnicheskii Vestnik Informatsionnykh Tekhnologii, Mekhaniki i Optiki, 2010, no. 4, pp. 46–50.Google Scholar
  18. 18.
    Evstifeev, M.I., Calculation and design of MEMS gyros, Giroskopiya i Navigatsiya, 2004, no. 1, pp. 26–39.Google Scholar
  19. 19.
    Peshekhonov, V.G. et al., Results of MEMS gyro development, Giroskopiya i Navigatsiya, 2005, no. 3, pp. 44–51.Google Scholar
  20. 20.
    Evstifeev, M.I., Elastic suspensions of inertial bodies in precision engineering, Gyroscopy and Navigation, 2007, no. 2, pp. 63–76.Google Scholar
  21. 21.
    Kovalev, A.S., Gryazin, D.G., Lychev, D.I., and Shadrin, Yu.V., On constructing the feedback loop in MEMS gyro, RAN. Nauchnoe priborostroenie, vol. 17, no. 1, 2007, pp. 91–97.Google Scholar
  22. 22.
    Evstifeev, M.I. and Untilov, M.I., Requirements on the accuracy of manufacturing MEMS gyro elastic suspension, Giroskopiya i Navigatsiya, 2003, no. 2, pp. 24–31.Google Scholar
  23. 23.
    Efremov, R.S. and Kulikova, O.N., MEMS angular rate sensor with improved vibration immunity, Materialy XIV konferenzii molodykh uchenykh “Navigatsiya i Upravlenie Dvizheniem” (Proceedings of the 14th Conference of Young Scientists “Navigations and Motion Control”), St. Petersburg: Elektropribor, 2013, pp. 225–229.Google Scholar
  24. 24.
    ADXRS646, High Stability, Low Noise Vibration Rejecting Yaw Rate Gyroscope, Data Sheet. Analog Devices, 2012.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. I. Evstifeev
    • 1
    • 2
  • D. P. Eliseev
    • 1
    • 2
  • I. B. Chelpanov
    • 1
    • 3
  1. 1.Concern CSRI Elektropribor, JSCSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations