Gyroscopy and Navigation

, Volume 6, Issue 4, pp 318–323 | Cite as

Identification of gravity anomaly model parameters in airborne gravimetry problems using nonlinear filtering methods

  • O. A. StepanovEmail author
  • D. A. Koshaev
  • A. V. Motorin


The problem of gravity anomaly (GA) estimation from aircraft is considered. The corresponding filtering problem is formulated under the assumption that satellite data about the aircraft altitude are available and the GA model is known. The sensitivity of the filtering problem to uncertainty of the model parameter characterizing GA variability is analyzed. The joint problem of this parameter identification and GA estimation is formulated as a nonlinear adaptive filtering problem and the algorithm for its solution is described. The simulation results confirm the efficiency of the algorithm.


Probability Density Function Kalman Filter Gravity Anomaly Adaptive Estimation Airborne Gravimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Drobyshev, N.V., Koneshov, V.N., Koneshov, I.V., and Solov’ev, V.N., Development of an aircraft laboratory and methods of gravimetric surveying in the arctic conditions, Vestnik Permskogo universiteta. Seriya “Geologiya”, 2011, no. 3, pp. 37–50.Google Scholar
  2. 2.
    Bolotin, Yu.V., Golovan, A.A., Koneshov, V.N., Smoller, Yu.L., Yurist, S.Sh., Fedorova, I.P., Hewison, W., Richter, T., Greenbaum, J., Young, D., and Blankenship, D., Using Airborne Gravimeter GT2A in Polar Areas, Proc. IAG Symposium on Terrestrial Gravimetry: Static and Mobile Measurements, St. Petersburg, 2013. pp. 21–23.Google Scholar
  3. 3.
    Krasnov, A.A. and Sokolov, A.V., Gravimetric surveying in remote areas of the Earth with the use of a Chekan-AM mobile gravimeter, Trudy Instituta prikladnoi astronomii RAN, 2009, no. 20, pp. 353–357.Google Scholar
  4. 4.
    Berzhitskii, V.N., Il’in, V.N., Savel’ev, E.B., Smoller, Yu.L., Yurist, S.Sh., Bolotin, Yu.V., Golovan, A.A., Parusnikov, N.A., Popov, G.V., and Chichinadze, M.V., Inertial gravimetric complex (GT-1A). Development and flight test results, Giroskopiya i Navigatsiya, 2002. no. (38), pp. 104–116.Google Scholar
  5. 5.
    Krasnov, A.A., Nesenyuk, L.P., Peshekhonov, V.G., Sokolov, A.V., and Elinson L.S. Integrated Marine Gravimetric System. Development and Operation Results, Gyroscopy and Navigation, 2011, vol. 2, no. 2, pp. 75–81.CrossRefGoogle Scholar
  6. 6.
    Krasnov, A., Sokolov, A, and Elinson, L., A New AirSea Gravimeter of the Chekan Series, Gyroscopy and Navigation, 2014. no. 3, pp 131–137.CrossRefGoogle Scholar
  7. 7.
    Smoller, Yu.L., Yurist, S.Sh., Golovan, A.A., and Yakushik, L.Yu., Using a multiantenna GPS receiver in the airborne gravimeter GT-2a for surveys in polar areas, Proc. 22nd Saint-Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, CSRI Elektropribor JSC, 2015. pp. 213–216.Google Scholar
  8. 8.
    Bolotin, Yu.V. and Vyazmin, V.S., Local multiscale estimation of the gravity anomaly from aerogravity data, Geofizicheskie issledovaniya, 2014. no. 3, 38–49.Google Scholar
  9. 9.
    Stepanov, O.A. and Koshaev, D.A., Analysis of filtering and smoothing techniques as applied to aerogravimetry, Gyroscopy and Navigation, 2010, no. 1, pp. 19–25.CrossRefGoogle Scholar
  10. 10.
    Stepanov, O.A., Blazhnov, B.A., and Koshaev, D.A., Studying the effectiveness of using satellite measurements in determining gravity acceleration aboard aircraft, Giroskopiya i Navigatsiya, 2002. no. 3 (38), pp. 33–47.Google Scholar
  11. 11.
    Bolotin, Y.V. and Yurist, S.S., Suboptimal smoothing filter for the marine gravimeter GT-2M, Giroskopiya i Navigatsiya, 2011. no. 2 (3), pp. 152–155.Google Scholar
  12. 12.
    Stepanov, O.A., Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii (Fundamentals of the Estimation Theory with Applications to the Problems of Navigation Information Processing), Part 2, Vvedenie v teoriyu fil’tratsii (Introduction to the Filtering Theory), St. Petersburg: TsNII Elektropribor, 2012.Google Scholar
  13. 13.
    Bolotin, Y.V. and Doroshin, D.R., Application of hidden Markov models to adaptive filtering of airgravimetry data, Vestnik MGU. Ser. 1. Matematika. Mekhanika, 2011, no. 1, pp. 1–6.Google Scholar
  14. 14.
    Jordan, S.K., Self-consistent statistical models for gravity anomaly and undulation of the geoid, J. Geophys. Res., 1972, vol. 77, no. 20, pp. 3660–3670.CrossRefGoogle Scholar
  15. 15.
    Stepanov, O.A. and Koshaev, D.A., A program for designing linear filtering algorithms for integrated navigation systems. Proc. 18th IFAC World Congress, Milan, Italy, 2011. pp. 4256–4259.Google Scholar
  16. 16.
    Stepanov, O.A., Primenenie teorii nelineinoi fil’tratsii v zadachakh obrabotki navigatsionnoi informatsii (Application of Nonlinear Filtering Theory for Processing Navigation Information), St. Petersburg: Elektropribor, 1998.Google Scholar
  17. 17.
    Beloglazov, I.N. and Kazarin, S.N., Joint optimal estimation, identification, and hypothesis testing in discrete dynamic systems, J. Comp. and Sys. Sciences International, 1998, vol. 37, no. 4, pp. 534–550.zbMATHMathSciNetGoogle Scholar
  18. 18.
    Dmitriev, S.P. and Stepanov, O.A., Solving multiple model navigation problems by using nonlinear filtering, Proc. 5th IFAC Symposium Nonlinear Control System, St. Petersburg, Russia, 2001. pp. 685–690.Google Scholar
  19. 19.
    Dolnakova, A.S., Stepanov, O.A., and Sokolov, A.I., Analysis of the potential accuracy in estimating the parameters of stochastic processes in problems of navigational data processing. XII Vserossiiskoe soveshchanie po problemam upravleniya (XII All-Russian Meeting on Control Problems), Russia, Moscow, IPU RAN, 2014. pp. 3730–3740.Google Scholar
  20. 20.
    Motorin, A.V. and Stepanov, O.A., Identification of sensor errors: Allan variance vs nonlinear filtering, 21st St. Petersburg Int. Conf. on Integrated Navigation Systems, St. Petersburg: Elektropribor, 2014. pp. 123–128.Google Scholar
  21. 21.
    Magill, D.T., Optimal adaptive estimation sampled stochastic processes, IEEE Transactions on Automatic Control, 1965. vol. AC-IO, no. 4, pp. 434–439.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lainiotis, D.G., Partitioning: A unifying framework for adaptive systems, I: Estimation, II: Control, IEEE Trans., 1976. vol. 64, no. 8. I. Estimation, pp. 1126–1140. II: Control, pp. 1182–1198.MathSciNetGoogle Scholar
  23. 23.
    Bucy, R.S. and Senne, K.D., Digital synthesis of nonlinear filters, Automatica, 1971. no. 7(3), pp. 287–298.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • O. A. Stepanov
    • 1
    Email author
  • D. A. Koshaev
    • 1
  • A. V. Motorin
    • 1
  1. 1.Concern CSRI Elektropribor, JSCITMO UniversitySt.PetersburgRussia

Personalised recommendations