Gyroscopy and Navigation

, Volume 6, Issue 2, pp 87–100 | Cite as

Navigation solution for a geostationary satellite based on its dynamic equations and occasional GNSS measurements

Article

Abstract

The paper offers solution to the problem of geostationary spacecraft navigation by navigation satellite signal measurements using nonlinear dynamic equations, which include perturbing factors such as non-sphericity of the gravitational field of the Earth, gravitational attraction of the Moon and the Sun, and direct solar radiation pressure. This solution uses the iterative Kalman filter based on UD-decomposition and is focused on the onboard implementation with limited computing resources. The estimates of current coordinates and velocity components obtained with the Kalman filter are taken into account when integrating nonlinear equations of a spacecraft motion up to the next solution time moment. With undetermined solar radiation pressure coefficient, the proposed solution proved efficient in terms of accuracy requirements for the spaceborne satellite navigation receiver. The tests were conducted using a GPS signal simulator and a receiver.

Keywords

Root Mean Square Orbit Determination Inertial Navigation System Geostationary Satellite Solar Radiation Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mikhaylov N.V., Mikhaylov, V.F., and Vasil’yev, M.V., Autonomous spacecraft navigation using GPS, Giroskopiya i Navigatsiya, 2008, no. 1, pp. 3–21.Google Scholar
  2. 2.
    Mikhaylov, N.V. and Chistyakov, V.V. Priemniki sputnikovoy navigatsii kosmicheskogo bazirovaniya: Arkhitektura i pervichnaya obrabotka signalov (Space-Based GNSS Receivers: Architecture and Primary Signal Processing), Voronezh: Nauchnaya kniga, 2014Google Scholar
  3. 3.
    Makhnenko, Yu.Yu., Economically effective technologies of navigation of geostationary satellites, Doctoral (Tech.) dissertation, Moskow, 2008.Google Scholar
  4. 4.
    Chernyavskii, G.M. and Bartenev, B.A., Orbity sputnikov svyazi (Orbits of communication satellites), Moscow: Svyaz’, 1978.Google Scholar
  5. 5.
    Bartenev, V.A., Malyshev, V.A., and Chernyavskii, G.M., Upravleniye orbitoy statsionarnogo sputnika (Control of stationary satellite control), Moscow: Mashinostroenie, 1984.Google Scholar
  6. 6.
    Lebedev, A.A., Bartenev, V.A., and Reshetnev, M.F., Upravleniye i navigatsiya ISZ na okolokrugovykh orbitakh (Control and navigation of Earth artificial satellites at near-circular orbits), Moscow: Mashinostroenie, 1988.Google Scholar
  7. 7.
    Montenbruck, O. and Gill, E., Satellite Orbits, Models, Methods and Applications, Berlin: Springer, 2000.CrossRefMATHGoogle Scholar
  8. 8.
    Makhnenko, Yu. Yu., Selection of motion model for navigation of geostationary satellite, Issledovano v Rossii, http://www.sci-journal.ru/articles/2008/092.pdf.
  9. 9.
    Global Positioning System: Theory and Applications, Parkinson, B.W., Spliker Jr, J.J., Eds., vol. I, II, 1996.Google Scholar
  10. 10.
    Coulson, P. and Srinivasan, B.J., New Techniques for Orbit Determination of Geosynchronous, Geosynchronous-Transfer, and Other High-Altitude Earth Orbiters, BEACON eSpace at Jet Propulsion Laboratory. 1997. http://hdl.handle.net/2014/22478 Google Scholar
  11. 11.
    Mikhailov, N.V. and Vasil’ev, M.V., Autonomous satellite orbit determination using spaceborne GNSS receivers, Gyroscopy and Navigation, 2011, no. 1, pp. 1–9.Google Scholar
  12. 12.
    Islentev, I.E., Grechkoseev, A.K., and Kokorin, V.I., RF patent 2325667 C1, MPK, G01S 5/12 (2006.01), A method to determine the spacecraft state vector by the signals of space navigation systems, 27.05.2008 Byul. 15.Google Scholar
  13. 13.
    Tapley, V.D., Schutz, B.E., and Born, G.H., Statistical Orbit Determination, Elsevier Academic Press, 2004.Google Scholar
  14. 14.
    Mikhaylov, N.V. and Mikhaylov, V.F., A method to determine position and velocity of geostationary spacecraft using the measurements of satellite navigation systems, Uspekhi Sovremennoy Radioelektroniki, 2013, pp. 113–121.Google Scholar
  15. 15.
    Xu, G., Orbits, Berlin: Springer-Verlag, 2008.MATHGoogle Scholar
  16. 16.
    Dmitriyev, S.P., Vysokotochnaya morskaya navigatsiya (High-precision marine navigation), St. Petersburg: Sudostroyeniye, 1991.Google Scholar
  17. 17.
    Stepanov, O.A., Primeneniye teorii nelineynoy fil’tratsii v zadachakh obrabotki navigatsionnoy informatsii (Applications of Nonlinear Filtering Theory to Navigation Data Processing), St. Petersburg: Elektropribor, 2003, 3rd edition.Google Scholar
  18. 18.
    Rivkin, S.S., Ivanovskii, R.Yu., and Kostrov, A.V., Statisticheskaya optimizatsiya navigatsionnykh sistem (Statistical optimization of navigation systems), Leningrad: Sudostroyeniye, 1976.Google Scholar
  19. 19.
    Bauer, F.H. et al., The GPS Space Service Volume, Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006), Sept. 26–29, 2006, pp. 2503–2514.Google Scholar
  20. 20.
    Miller, J.J. and Moreau, M.C., Enabling a Fully Interoperable GNSS Space Service Volume, Presentations from 7th Meeting of the International Committee on Global Navigation Satellite Systems (ICG-7), Beijing, China, November 2012. http://www.gps.gov/multime-dia/presentations/2012/11/ICG/miller.pdf.Google Scholar
  21. 21.
    Dmitriev, S.P., Stepanov, O.A., and Pelevin, A.E., Motion control and non-invariant algorithms using the vehicle dynamics for inertial-satellite integrated navigation, 7th St. Petersburg International Conference on Integrated Navigation Systems, 29–31 May, 2000 St. Petersburg, Russia.Google Scholar
  22. 22.
    Stepanov, O.A., Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii (Foundations of Estimation Theory with Applications to Navigation Data Processing), Part 2. Introduction to Filtering Theory, St. Petersburg: Elektropribor, 2012.Google Scholar
  23. 23.
    Brown, R.G. and Hwang, P.Y.C., Introduction to Random Signals and Applied Kalman Filtering, New York: Wiley, 1992, 2nd edition.MATHGoogle Scholar
  24. 24.
    Mikhailov, N.V., Avtonomanya navigatsiya kosmicheskikh apparatov pri pomotschi sputnikovykh radionavigatsionnykh sistem (Spacecraft Autonomous Navigation Using Satellite Radionavigation Systems), St. Petersburg, Politekhnika, 2014.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.RNav JSCSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.Concern CSRI ElektropriborJSCSt. PetersburgRussia

Personalised recommendations