Gyroscopy and Navigation

, Volume 6, Issue 2, pp 115–122 | Cite as

Enhancing the mechanical resistance of micromechanical gyros

  • M. I. Evstifeev
  • D. P. Eliseev
  • I. B. Chelpanov


The paper considers the methods improving the mechanical resistance of MEMS gyros. A multi-aspect classification is proposed for systematizing data on mechanical performance of various gyro designs, and new perspective design principles are considered.


Inertial Measurement Unit Angular Rate Analog Device Subharmonic Resonance Shock Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Peshekhonov, V.G., Gyroscopic navigation systems: Current status and prospects, Gyroscopy and Navigation, 2011, no. 3, pp. 111–118.Google Scholar
  2. 2.
    Peshekhonov, V.G. et al., Russian MEMS RR-type gyro. Current status and prospects, Informatsionnoe Protivodeistvie Ugrozam Terrorizma, 2012, no. 19, pp. 108–114.Google Scholar
  3. 3.
    Binder, Ya.I. et al., Mobile inclinometric station on MEMS sensors for trajectory survey of grouped well-bores, Giroskopiya i Navigatsiya, 2013, no. 1, pp. 95–106.Google Scholar
  4. 4.
    Peshekhonov, V.G., Nesenyuk, L.P., and Gryazin, D.G., Micromechanical inertial converters. Current status and military applications, Mekhatronika, Avtomatizatsiya, Upravlenie, 2009, no. 3, pp. 28–32.Google Scholar
  5. 5.
    Konovalov, S.F. and Podchezertsev, V.P., Inertial measurements of driving pile displacements, Gyroscopy and Navigation, 2014, no. 1, pp. 33–39.Google Scholar
  6. 6.
    Boronakhin, A.M. et al., Studies of MEMS sensors in railway track diagnostics, Giroskopiya i Navigatsiya, 2012, no. 1, pp. 57–66.Google Scholar
  7. 7.
    Bogdanov, M.B., Inertial measurement unit AIST-350T: Results of mechanical investigation tests, Gyroscopy and Navigation, 2014, no. 4, pp. 238–244.Google Scholar
  8. 8.
    ADXRS646. High Stability, Low Noise Vibration Rejecting Yaw Rate Gyroscope, Data Sheet. Analog Devices. 2012.Google Scholar
  9. 9.
    Lukyanov, D.P. et al., State of the art and prospects for the development of SAW-based solid-state gyros, Gyroscopy and Navigation, 2011, no. 4, pp. 214–221.Google Scholar
  10. 10.
    Weinberg, H., Gyro mechanical performance: The most important parameter, Technical Article MS-2158. Analog Devices, Inc., September 2011, pp. 1–5.Google Scholar
  11. 11.
    Nguyen, C., The Harsh Environment Robust Micromechanical Technology (HERMiT) Program: Success and some unfinished business, Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International, June 2012, pp. 1–3.Google Scholar
  12. 12.
    Evstifeev, M.I., Classification parameters of MEMS gyro designs, Giroskopiya i Navigatsiya, 2004, no. 3, pp. 30–37.Google Scholar
  13. 13.
    Evstifeev, M.I. et al., Analysis of computer aids for designing MEMS gyros from mechatronics viewpoint, Mekhatronika, Avtomatizatsiya, Upravlenie, 2004, no. 2, pp. 31–37.Google Scholar
  14. 14.
    Evstifeev, M.I., Eliseev, D.P., Kovalev, A.S., and Rozentsvein, D.V., Results of MEMS gyro mechanical tests, Gyroscopy and Navigation, 2011, vol.2, no. 3, pp. 119–125.CrossRefGoogle Scholar
  15. 15.
    Evstifeev, M.I., Errors of MEMS gyro on a vibrating foundation, Giroskopiya i Navigatsiya, 2002, no. 2, pp. 19–25.Google Scholar
  16. 16.
    Nekrasov, Ya.A. et al., Improving the performance of the Russian RR-type MEMS gyro, 21st St. Petersburg International Conference on Integrated Navigation Systems, 2014, pp. 285–293.Google Scholar
  17. 17.
    Evstifeev, M.I., Kovalev, A.S., and Eliseev, D.P., Electromechanical model of RR-type MEMS gyro with consideration for the platform vibrations, Gyroscopy and Navigation, 2014, vol.5, no. 3, pp. 172–178.CrossRefGoogle Scholar
  18. 18.
    Lestev, A.M., Combination resonances in MEMS gyro dynamics, Gyroscopy and Navigation, 2015, no. 1, pp. 41–44.Google Scholar
  19. 19.
    Acar, C. and Shkel, A., MEMS Vibratory Gyroscopes. Structural Approaches to Improve Robustness, Springer Science, 2009.CrossRefGoogle Scholar
  20. 20.
    Evstifeev, M.I. and Chelpanov, I.B., Improving mechanical performance of MEMS gyros, Gyroscopy and Navigation, 2013, vol. 4, no. 3, pp. 174–180.CrossRefGoogle Scholar
  21. 21.
    Barbour, N. et al., Inertial MEMS system applications, Advances in Navigation Sensors and Integration Technology, RTO LECTURE SERIES 232, 2004, pp. 7-1–7-12.Google Scholar
  22. 22.
    RF Patent 2447403 RF, MPK G01C 19/56, Micromechanical gyro, Nekrasov, Ya.A.; 10.04.2012; Byulleten no. 10.Google Scholar
  23. 23.
    Udovenko, V.A. et al., On the formation of high damping state and optimization of structure of industrial damping steels, Solid State Phenomena, 2008, vol. 137, pp. 119–128.CrossRefGoogle Scholar
  24. 24.
    Bershtam, Ya.N., Evstifeev, M.I., and Eliseev, D.P., Studying the alloys with high internal damping in the structure of MEMS gyro, Materialy XXIX konferentsii pamyati N.N. Ostryakova (Proceedings of the 29th Conference in Memory of N.N. Ostryakov), 2014, pp. 65–72.Google Scholar
  25. 25.
    Lestev, M.A., The influence of nonlinear factors on dynamics and accuracy of micromechanical gyroscopes, 14 th St. Petersburg International Conference on Integrated Navigation Systems, 2007, pp. 24–25.Google Scholar
  26. 26.
    Evstifeev, M.I., Elastic suspensions of inertial bodies in precision instrument engineering, Gyroscopy and Navigation, 2014, vol. 5, no. 4, pp. 229–237.CrossRefGoogle Scholar
  27. 27.
    Evstifeev, M.I., Rozentsvein, D.V., and Chelpanov, I.B., Strength analysis of MEMS gyro elastic suspensions, Gyroscopy and Navigation, 2010, vol. 1, no. 4, pp. 263–271.CrossRefGoogle Scholar
  28. 28.
    Sang Won Yoon, Vibration isolation and shock protection for MEMS, University of Michigan Ph.D. Dissertation, 2009.Google Scholar
  29. 29.
    Evstifeev, M.I. and D.V. Rozentsvein, Analysis of contact interactions in MEMS gyros, Nauchno-Tekhnicheskii Vestnik Informatsionnykh Tekhnologii, Mekhaniki i Optiki, 2010, no. 4, pp. 46–50.Google Scholar
  30. 30.
    Evstifeev, M.I. and D.V. Rozentsvein, Using multibody systems to improve vibration resistance of MEMS gyros, Nauchno-Tekhnicheskii Vestnik Informatsionnykh Tekhnologii, Mekhaniki i Optiki, 2009, no. 1, pp. 40–44.Google Scholar
  31. 31.
    ADXRS150. Single Chip Yaw Rate Gyro with Signal Conditioning, Data Sheet. Analog Devices. 2010.Google Scholar
  32. 32.
    Lapadatu, D. et al., SAR500—A high-precision high-stability butterfly gyroscope with north seeking capability, Proceedings of IEEE/ION PLANS 2010, pp. 6–13.Google Scholar
  33. 33.
    U.S. Patent 6443008, Decoupled Multi-Disk Gyroscope, Funk K. et al; Robert Bosch GmbH, Sep. 3, 2002.Google Scholar
  34. 34.
    U.S. Patent 8266961. Inertial Sensors with Reduced Sensitivity to Quadrature Errors and Micromachining Inaccuracies, Kuang J., Geen J.; Analog Devices, Sep.18, 2012.Google Scholar
  35. 35.
    U.S. Patent 5635640. Micromachined Device with Rotationally Vibrated Masses, Geen J.; Analog Devices, Jun.3, 1997.Google Scholar
  36. 36.
    Geen, J., Progress in Integrated Gyroscopes, IEEE A&E Systems magazine, November, 2004, pp. 12–17.Google Scholar
  37. 37.
    Singh, T. et al., Analysis of acceleration sensitivity in MEMS tuning fork gyroscope, Proceedings of Transducers’11, Beijing, China, June 5–9, 2011, 2006–2009.Google Scholar
  38. 38.
    Sang Won Yoon et al., Analysis and wafer-level design of a high-order silicon vibration isolator for resonating MEMS devices, J. Micromech. Microeng, 2011, no. 21, pp. 1–12.Google Scholar
  39. 39.
    Habibi, S. et al., Gun hard inertial measurement unit based on MEMS capacitive accelerometer and rate sensor, Proceedings of IEEE/ION PLANS 2008, May 6–8, 2008, pp. 232–237.Google Scholar
  40. 40.
    Dean, R.N. et al., Characterization of the performance of a MEMS gyroscope in acoustically harsh environments, IEEE Transactions on Industrial Electronics, 2011, vol. 58, no. 7, pp. 2591–2596.CrossRefGoogle Scholar
  41. 41.
    Chelpanov, I.B., Evstifeev, M.I., and Kochetkov, A.V., Acoustic tests of MEMS gyros,
  42. 42.
    Dean, R.N. et al., Microfibrous metallic cloth for acoustic isolation of a MEMS gyroscope, Proceeding of SPIE 7979, Industrial and Commercial Applications of Smart Structures Technologies, 2011, 10.1117/12.880624.Google Scholar
  43. 43.
    RF patent 2486469, МПК G01C 19/5656, A method of suppressing false signal in angular rate meter with MEMS gyros, Ya.A. Nekrasov, 27.06.2013; Byulleten no. 18.Google Scholar
  44. 44.
    RF Patent 2486468, МПК G01C 19/56. Angular rate meter, Nekrasov, Ya.A., 27.06.2013, Byulleten no. 18.Google Scholar
  45. 45.
    Lyukshonkov, R.G. and Moiseev, N.V., Differential capacity displacement sensor with additional gap information, Nauchno-Tekhnicheskii Vestnik SPbGU ITMO, 2011, no. 4, pp. 67–72.Google Scholar
  46. 46.
    RF Patent 2471149, MPK G01C 19/56. Force-rebalance MEMS gyro, Nekrasov, Ya.A., Moiseev, N.V., and Lyukshonkov, R.G., 20.06.2012; Byulleten no. 17.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • M. I. Evstifeev
    • 1
    • 2
  • D. P. Eliseev
    • 2
  • I. B. Chelpanov
    • 1
    • 3
  1. 1.Concern CSRI ElektropriborJSCSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.St. Petersburg Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations