Advertisement

Gyroscopy and Navigation

, Volume 5, Issue 4, pp 229–237 | Cite as

Elastic suspensions of inertial bodies in precision instrument engineering

  • M. I. Evstifeev
Article

Abstract

A model for an elastic suspension of inertial body is presented. The requirements for the structure of the stiffness matrix are formulated. The reasons for nonlinearity of the suspension elastic characteristics are analyzed. The methods are suggested to decrease them. The relations for the coefficients accounting for the influence of the manufacturing errors in the shape and position of the elastic elements on the suspension natural frequencies have been obtained.

Keywords

Stiffness Matrix Elastic Element Turn Angle Manufacturing Error Inertial Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Severov, L.A. et al., MEMS gyroscopes: designs, characteristics, technologies, lines of development, Izv. vuzov. Priborostroenie, 1998. vol. 41, nos. 1–2, pp. 57–73.Google Scholar
  2. 2.
    Lestev, A.M. and Popova I.V., The current status of the theory and practical development of MEMS gyroscopes, Giroskopiya i Navigatsiya, 1998, no. 3, pp. 81–94.Google Scholar
  3. 3.
    Apostolyuk, V.A., Logeeswaran, V.J., and Tay, F.E.H., Analytical design of Coriolis vibratory gyroscopes, Symposium Gyro Technology, Stuttgart, Germany, 2002, pp. 2.0–2.15.Google Scholar
  4. 4.
    Evstifeev, M.I. et al., Strength analysis of MEMS gyro elastic suspensions, Gyroscopy and Navigation, 2010, vol. 1, no. 4, pp. 263–271CrossRefGoogle Scholar
  5. 5.
    Vibratsiya energeticheskikh mashin: Spravochnoe posobie (Vibration of Energy Machines. Reference Book), L.: Mashinostroenie, 1974.Google Scholar
  6. 6.
    Evstifeev, M.I. and Chelpanov I.B., Quality criteria and optimization of RR-type MEMS gyro designs, Gyros-copy and Navigation, 2012, vol.3, no. 3, pp. 168–174.CrossRefGoogle Scholar
  7. 7.
    MEMS Reliability Assurance Guidelines for Space Application, Brian Stark, Ed., Jet Propulsion Laboratory, Pasadena, California, 1999.Google Scholar
  8. 8.
    Evstifeev, M.I. and Untilov, A.A., Accuracy requirements for manufacturing elastic suspensions of MEMS gyros, Giroskopiya i Navigatsiya, 2003, no. 2, pp. 24–31.Google Scholar
  9. 9.
    Evstifeev, M.I. et al., Patent 2289788 RF, MPK G01 S 19/56. Micromechanical vibratory gyroscope, 2006, Byull. no. 35.Google Scholar
  10. 10.
    Evstifeev, M.I. The errors of a MEMS gyroscope on a vibrating base, Giroskopiya i Navigatsiya, 2002, no. 2, pp.19–25.Google Scholar
  11. 11.
    Evstifeev, M.I. and Chelpanov I.B., Improving mechanical performance of MEMS Gyros, Gyroscopy and Navigation, 2013, vol. 4, no. 3, pp.174–180.CrossRefGoogle Scholar
  12. 12.
    Evstifeev, M.I. et al., Patent 2296302 RF, MPK G01 S 19/56. Micromechanical vibratory gyroscope, 2007, Byull. no. 9.Google Scholar
  13. 13.
    Davis, W.O. and Pisano, A.P., Nonlinear mechanics of suspension beams for micromachined gyroscopes, Modeling and Simulation of Microsystems, 2001, pp. 270–273.Google Scholar
  14. 14.
    Evstifeev, M.I., Studying the influence of nonlinear stiffness on the characteristics of a vibratory micromechanical gyroscope, Mikrosistemnaya tekhnika. Materialy mezhd. nauch. shkoly, Taganrog: Izd. TRTU, 2004, pp. 85–94.Google Scholar
  15. 15.
    Biderman, V.L., Teoriia mekhanicheskikh kolebanii (Theory of Mechanical Oscillation), M.: Vyssh. shkola, 1980.Google Scholar
  16. 16.
    Lestev, A.M., Nonlinear parametric resonance in MEMS gyroscope dynamics, Izv. vuzov. Priborostroenie, 2004, vol. 47, no. 2, pp. 36–42.Google Scholar
  17. 17.
    Evstifeev, M.I. et al., Patent 2269746 RF, MPK G01 C 19/56. Micromechanical vibratory gyroscope, 2006, Byull. no. 4.Google Scholar
  18. 18.
    Greiff P. et al., US Patent 5650568, 1997.Google Scholar
  19. 19.
    Geen J. and Donald C., US Patent 6122961, 2000.Google Scholar
  20. 20.
    Geen J.A.. Progress in integrated gyroscopes, IEEE A&E Systems Magazine, November 2004, pp. 12–17.Google Scholar
  21. 21.
    Peshekhonov, V.G. Nesenyuk, L.P., Gryazin, D.G., Nekrasov, Ya.A., Evstifeyev, M.I., Blazhnov, B.A., and Aksenenko, V.D., Inertial measurement units on micromechanical sensors, IEEE Aerospace and Electronic Systems Magazine, 2008, vol. 23, no. 10, pp. 26–31.CrossRefGoogle Scholar
  22. 22.
    Severov, L.A. et al., Information characteristics of a micromechanical vibratory gyroscope, Giroskopiya i Navigatsiya, 2003, no. 1, pp. 76–82.Google Scholar
  23. 23.
    Dzhashitov, V.E. and Pankratov, V.M., Selecting the parameters of an elastic suspension for a planar micromechanical gyroscope based on determination of its natural oscillation frequencies, Giroskopiya i Navigatsiya, 2005, no. 4. pp. 42–56.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Concern CSRI Elektropribor, JSCITMO UniversitySt. PetersburgRussia

Personalised recommendations