Gyroscopy and Navigation

, Volume 5, Issue 1, pp 40–43 | Cite as

Robust filtering using the method of local approximations of power spectral densities

  • A. V. Loparev
  • O. A. Stepanov
  • V. I. Kulakova


The application of the method of local approximations of power spectral densities to robust filtering problems with bounded variances of signal derivatives is considered. The algorithm design is based on the assumption that the signal is formed as n-times integrated white noise. It is important that the upper bound of the root-mean-square filtering error increases by no more than 1% as compared with the exact solution of the robust filtering problem. An example is given to illustrate the effectiveness of the algorithm proposed.


Power Spectral Density Error Variance Local Approximation Optimal Filter Order Filter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chelpanov, I.B., Nesenyuk, L.P., and Braginskii, M.V., Raschet kharakteristik navigatsionnykh priborov (Calculation of Characteristics of Navigation Instruments), Leningrad: Sudostroenie, 1978.Google Scholar
  2. 2.
    Chelpanov, I.B., Stepanov, O.A., and Loparev, A.V., Experience and Prospects for the Application of Time-Varying Filtering Algorithms in Navigation Problems, Giroskopiya i Navigatsiya, 2010, no. 4, pp. 88–89.Google Scholar
  3. 3.
    Loparev, A.V., Stepanov, O.A., and Chelpanov, I.B., Using Frequency Approach to Time-Variant Filtering for Processing of Navigation Information, Gyroscopy and Navigation, 2012, vol. 3, no. 1, pp. 9–19.CrossRefGoogle Scholar
  4. 4.
    Stepanov, O.A., Chelpanov, I.B., and Loparev, A.V., Using Time-Frequency Approach to Solve Problems of Navigation Data Processing, Materialy plenarnogo zasedaniya pyatoi Rossiiskoi mul’tikonferentsii po problemam upravleniya, St. Petersburg, 2012, pp. 64–80.Google Scholar
  5. 5.
    Stepanov, O.A., Osnovy teorii otsenivaniya s prilozheniyami k zadacham obrabotki navigatsionnoi informatsii. Chast’ 2. Vvedenie v teoriyu fil’tratsii (The Fundamentals of Estimation Theory with Applications to Problems of Navigation Information Processing. Part 2. Introduction to the Theory of Filtering), St. Petersburg, 2010.Google Scholar
  6. 6.
    Kulakova, V.I. and Nebylov, A.V., Guaranteed Estimation of Signals with Bounded Variances of Derivatives, Automation and Remote Control, vol. 69, is. 1, Jan. 2008, pp. 76–88.CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Besekerskii, V.A. and Nebylov, A.V., Robastnye sistemy avtomaticheskogo upravleniya (Robust Automatic Control Systems), Moscow: Nauka, 1983.Google Scholar
  8. 8.
    Nebylov, A.V., Ensuring Control Accuracy, Lecture Notes in Control and Information Sciences, Heidelberg: Springer-Verlag, 2004, vol. 305.CrossRefzbMATHGoogle Scholar
  9. 9.
    Kulakova, V.I., Nebylov, A.V., and Stepanov, O.A., Application of H 2/H Approach to the Problem of Aviation Gravimetery, Giroskopiya i Navigatsiya, 2008, no. 2, pp. 53–62.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. V. Loparev
    • 1
  • O. A. Stepanov
    • 1
  • V. I. Kulakova
    • 2
  1. 1.Concern CSRI ElektropriborJSCSt. PetersburgRussia
  2. 2.National Research University of Information Technology, Mechanics and OpticsSt. PetersburgRussia

Personalised recommendations